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Introduction 
 

Apache YARN is one of many open-source 

implementations of MapReduce, with improvement in 

scalability, efficiency and the capacity of supporting 

heterogeneity compared with Hadoop 1.x. An important 

issue for such improvement is the 2-level scheduler 

design with different scheduling strategies. In default, 

YARN supports three types of schedulers: FIFS, fair 

sharing, Dominant Resource Fairness. Although these 

types of schedulers can deal with most jobs 

encountered, they are not al-ways efficient, nor are they 

suitable for scheduling some specified cases. In this 

project, we explore fields such as scheduling utility, 

queuing latency through extensive experiments. 

  
1. Degree of Freedom 
 

We have 5 scheduling policies: the NONE 

scheduler allocates machines randomly to jobs in FIFO 

order, the HETERGEN scheduler also allocates 

machines to jobs in FIFO order but it tries allocating 

preferred resources before allocating non-preferred 

resources, the SJF scheduler handles jobs in their 

duration order and also tries to allocate preferred 

resources first, the HARD scheduler picks the highest 

utility job and only allocates its preferred resources, and 

the SOFT scheduler picks the highest utility job and 

tries allocating preferred resources before allocating 

non-preferred resources. 

 

All above policies have little degree of 

freedom in deciding the job execution order because 

there is only one job can be executed in any time, either 

the earliest job, shortest job, or the highest utility job. 

The HARD and SOFT schedulers adapt the greedy 

approach to maximize total utility such that at the time 

a job starts running, there is no job that has arrived, has 

not started, and has higher expected utility, given the 

available re-sources. The NONE and HETERGEN 

schedulers al-ways find the earliest arrived waiting job 

such that at the time a job starts running, there is no job 

that has arrived, has not started, and arrives earlier, 

given the available resources. The SJF scheduler always 

find the shortest duration job such that at the time a job 

starts running, there is no job that has arrived, has not 

started, and is “shorter”, given the available resources. 

In order words, all above schedulers are allowed to 

 

 
delay scheduling decision, but there is only precisely 

one job can be handled at any time. 

  
2. Description of Code 
 
2.1. Header  
Data Structures: 
 

int free_machines  

Global counter that keeps track the number of 

available machines. 
 

int mode 

Global variable that keeps track the mode 

(NONE, HARD, SOFT), which sets default by make 

and overrides by config file.  
vector <vector<int32_t>> free_racks 

Global 2D vector that keeps track of the free 

machines of each rack. 
 

vector <vector<int32_t>> used_racks 

Global 2D vector that keeps track of the used 

machines of each rack. 
 

unordered_map<int32_t, time_t> free_times 

Global hash table that maps used machine to 

its expected free time.  
set<Job_S *> jobs 

Global set of all waiting jobs. 
 

mutex mtx 

Global mutex to ensure synchronization on 

resource allocation. 
 
    struct Job_S { 
 

JobID jobId; 

job_t::type jobType; 

int32_t k; 

int32_t priority; 

double duration; 

double slowDuration; 

double chosen_duration; 

time_t added_time; 

int32_t *machines; 

     }; 
 

Dynamically allocated structure of job info. 

 
 



 

 

2.2. Scheduling Algorithm 
 
Initialization: 

Our code reads the scheduling policy and rack 

information from config file, and initializes mode as the 

scheduling policy, free_machines as the total number of 

machines, free_racks as the indices of available 

machines and used_racks as empty 2D vector. 

 
 
AddJob: 

Our code first acquires mutex locks. It records 

the added_time of the new job and adds the new job to 

jobs set. It then calls TryToAllocate to see if resource 

allocation is possible and releases the mutex locks. 

 

FreeResources: 

Our code first acquires the mutex lock. Then, 

it places the freed machines from used_racks to 

free_racks. Also, free_machines count is updated. Next, 

it calls TryToAllocate to see if resource allocation is 

possible. Lastly, it releases the mutex lock. 

 

TryToAllocate: 

First, our code tries to remove all time-out jobs 

from jobs set. The timeout jobs are those jobs that have 

condition of (maxT - duration) < (waited time in jobs 

set). So, this can avoid wasting resources to run jobs 

that will be killed anyways. 

  
Then, depending on the scheduling policy, our 

scheduler picks the earliest added job if the mode is 

NONE or HETERGEN, picks the shortest duration job if 

mode is SJF, or picks the highest utility job if the mode is 

HARD or SOFT. For NONE scheduler, machines are 

randomly picked from free_racks. 

 

For HETERGEN scheduler, our code first checks 

if preferred resources allocation is possible for the earliest 

job. If preferred resources allocation is possible (GPU job 

wants machines from first rack and MPI wants machines 

from same rack), those resources are allocated. If preferred 

resources allocation is not possible, we check the 

condition (the minimum expected waiting time + duration) 

< (slowDuration). If true, our code chooses to wait for next 

free rack. If not, our code picks machines randomly across 

different racks. 

 

For SJF scheduler, our code first checks if 

preferred resources allocation is possible for the shortest 

duration job, and repeats above process if preferred 

resources allocation is not possible. 

 

For HARD and SOFT, to pick highest utility job, 

our code first traverses all jobs to compute utility of each 

job and free_machines count is used to skip those jobs that 

can-not be fulfilled at the moment. Our code first checks if 

preferred resources allocation is possible for each job. If 

preferred resources allocation is possible, the utility is 

computed with maxT - duration - (waited time in jobs set). 

If preferred resources allocation is not possible, HARD 

scheduler always chooses to wait for free rack while SOFT 

scheduler computes the minimum expected waiting time 

for the next available rack. If (the mini-mum expected 

waiting time + duration) < (slowDura-tion), SOFT 

scheduler chooses to wait for next free rack. If not, SOFT 

scheduler computes utility as maxT - slowDuration - 

(waited time in jobs set) and picks machines randomly 

across different racks. 

 

Once the earliest job, the shortest job or the 

highest utility job is picked (depending on the mode), 

our code allocates the free machines and moves them 

from free_racks to used_racks. Then, the expected freed 

time of those machines are stored in free_times such 

that they can be used to compute the minimum 

expected waiting time for next free rack. Also, 

free_machines count is updated. The handled job is 

then removed from jobs set. Finally, our code checks if 

the jobs set is empty, and if not, it picks the new earliest 

job or highest utility job to handle. 

  
3. Non-preferred Resources Allocation & 

Resources Allocation Delay 

  Obviously, NONE scheduler does not have a 

sense of preferred resources allocation. The HARD 

scheduler always allocates preferred resources. So, 

when only non-preferred resources are available, the 

HARD scheduler chooses to wait for preferred 

resources to be freed. On the other hand, when 

preferred resources for a job are not available, the 

HETERGEN, SJF, and SOFT schedulers evaluate the 

expected waiting time for its preferred resources to 

decide whether they should wait for preferred resources 

or not. 

 

 These 3 schedulers compare (the minimum 

expected waiting time for preferred resources + fast 

duration time) with (slow duration time). If former is 

less than latter, it means that this job should wait for its 

preferred resources. If not, non-preferred resources 

allocation is decided. 

 

 
 



 

 

Scheduling Policy 

NONE HETERGEN SJF 
(Mean Completion Time)    

    

traceGPU-micr 122.319 97.874 97.70 
    

traceMPI-min 188.855 147.258 146.33 
    

traceMPI-c2x1-rho0.xx- 

659.6147 431.45166 417.34616 
batc    

     
Table 1. Three Scheduling Policies  

 

We see the performance of NONE scheduler 

from above chart that the sense of preferred resources 

allocation is very important in improving running time 

as the jobs do not have to run in their slowDuration 

most of the time. We see a rather similar performance 

improvement for HETERGEN scheduler and SJF 

scheduler, since they both adopt the same strategy in 

delaying resources allocation. The difference between 

their performances should explain whether job arrival 

order or job duration order is more essential in 

improving completion time. With above results, we see 

job duration order is more essential. 

     

HARD 
traceCombined-c2x6- traceCombined-c2x4- 

rho0.70 rho0.80  

   

Mean Completion 

378.688 529.429 
Time   

   

Total Utility 28745.916 38893.116 
   

Table 2. Hard Scheduler Performance 

 
   

SOFT 
traceCombined- traceCombined- 

c2x6-rho0.7 c2x4-rho0.8  

   

Mean Completion 

379.80 396.01 
Tim   

   

Total Utilit 28706.95 46631.29 
    

Table 3. Soft Scheduler Performance 

 
 

For HARD and SOFT schedulers, we see a huge 

improvement in traceCombined-c2x4-rho0.80, but 

essentially no difference in traceCombined-c2x6-rho0.70. 

This behaviour is expected because preferred resources 

are available most of the time for MPI jobs in trace-

Combined-c2x6-rho0.70, and so there is little influence of 

deciding to allocate non-preferred resources. For 

traceCombined-c2x4-rho0.80, the MPI jobs are added 

more closely together and so their preferred resources are 

not usually available. 

Therefore, it is important for scheduler to be 

capable to decide whether to allocate non-preferred 

resources smartly. If the scheduler decides non-preferred 

resources allocation for a MPI job, it means that its 

completion time can be shortened and so it maximizes the 

overall utility. 

  
4. Job Starvation 
 

For the HARD and the SOFT scheduler, the 

low utility jobs are starved as more new jobs are added. 

This starvation behaviour is expected since utility of 

each job is inversely correlated to its waiting time in 

jobs set, and so those new jobs are more likely to have 

higher utility. Those low utility jobs eventually are 

more likely to be killed by timeout errors. For the SJF 

scheduler, the long duration jobs are starved as more 

new short duration jobs are added. This starvation 

behaviour also is expected since job duration of each 

job is inversely correlated to its waiting time in jobs set, 

and so those long duration jobs eventually are more 

likely to be killed by timeout errors. 

  
The NONE and HETERGEN schedulers do 

not suffer from job starvation because each job is ran by 

its arrival order and so no job is unfairly starved. 

However, we see that the NONE scheduler performs 

much worse than the utility based schedulers. So, we 

believe that utility based job starvation is good for 

overall completion time and utility since it allows 

higher utility jobs to be completed more efficiently with 

preferred resources. 

  

NONE 
traceCombined- traceCombined- 

c2x6-rho0.7 c2x4-rho0.8  

   

Mean Completion 

519.20 887.16 
Tim   

   

Total Utilit 23827.83 18144.56 
   
 

Table 4. None Scheduler Performance 
 
 

5. Weaknesses 
 

Our utility based scheduler is greedy so that it 

always picks the highest utility job to maximize the 

overall utility. However, the greedy approach does not 

always give the most optimal solution. If the trace is 

known to scheduler prior to running the jobs, the 

scheduler can easily compute the optimal configuration 

of running the jobs. Since this is unrealistic, greedy 

approach is a good strategy to get near-optimal 

solution.  



 

 

We realized that job starvation is a big issue. 

An easy way to fix this is to prioritize jobs with utility 

getting close to 0 so that they can finish execution 

before they get timeout errors. However, this sacrifices 

the overall completion time and utility. 

  
6. Designed Trace  
 
 
 
 
 
 
 

 

Fig. 1 Designed Trace Workflow 

 

The idea of the designed trace is illustrated 

above. Within the time period of [0, T1], job1, job2, 

...jobN are added. All of these jobs have long duration. 

Within the period of [T1, T2], no more jobs are added. 

We design our trace in the way that shortly before time 

T2, some of those N jobs in jobs set will fail to have 

sufficient time to complete execution such that its 

utility reaches 0. 

 

In other words, even if those jobs run, they 

will still get timeout errors. For schedulers that do not 

check this condition, those job will run. Then, at time 

T2, a new job jobK is added. So, those old jobs will 

block the re-sources that can be used to execute the new 

job jobK. However, as our scheduler checks and 

removes all those jobs from jobs set if waited_time + 

execution_time > Max_T, those old jobs will be 

removed so that the new job jobK will not be blocked, 

thus improving the overall completion time and utility. 

The experiment results are shown as follows. The 

highlighted job result in both cases is for the newly 

added job, and we do see a huge performance 

difference when those already-timeout waiting jobs are 

discarded smartly. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Scheduler removed already-timeout waiting jobs 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 New job is blocked by soon-timeout waiting jobs 

 

The designed trace is included in the report 

folder, and it is under the “evidence/phase3/designed 

_trace/” directory.  The  file “results_designedTrace_ 

good.analysis” corresponds to Fig. 2; file “results_ 

designedTrace_bad_analysis” corresponds to what is 

illustrated in Fig. 3. 
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