

Apache Hadoop YARN Placement-Aware Scheduling

Di Jin (dijin@andrew.cmu.edu) HingOn Miu (hmiu@andrew.cmu.edu)

Carnegie Mellon University

Introduction

Apache YARN is one of many open-source

implementations of MapReduce, with improvement in

scalability, efficiency and the capacity of supporting

heterogeneity compared with Hadoop 1.x. An important

issue for such improvement is the 2-level scheduler

design with different scheduling strategies. In default,

YARN supports three types of schedulers: FIFS, fair

sharing, Dominant Resource Fairness. Although these

types of schedulers can deal with most jobs

encountered, they are not al-ways efficient, nor are they

suitable for scheduling some specified cases. In this

project, we explore fields such as scheduling utility,

queuing latency through extensive experiments.

1. Degree of Freedom

We have 5 scheduling policies: the NONE

scheduler allocates machines randomly to jobs in FIFO

order, the HETERGEN scheduler also allocates

machines to jobs in FIFO order but it tries allocating

preferred resources before allocating non-preferred

resources, the SJF scheduler handles jobs in their

duration order and also tries to allocate preferred

resources first, the HARD scheduler picks the highest

utility job and only allocates its preferred resources, and

the SOFT scheduler picks the highest utility job and

tries allocating preferred resources before allocating

non-preferred resources.

All above policies have little degree of

freedom in deciding the job execution order because

there is only one job can be executed in any time, either

the earliest job, shortest job, or the highest utility job.

The HARD and SOFT schedulers adapt the greedy

approach to maximize total utility such that at the time

a job starts running, there is no job that has arrived, has

not started, and has higher expected utility, given the

available re-sources. The NONE and HETERGEN

schedulers al-ways find the earliest arrived waiting job

such that at the time a job starts running, there is no job

that has arrived, has not started, and arrives earlier,

given the available resources. The SJF scheduler always

find the shortest duration job such that at the time a job

starts running, there is no job that has arrived, has not

started, and is “shorter”, given the available resources.

In order words, all above schedulers are allowed to

delay scheduling decision, but there is only precisely

one job can be handled at any time.

2. Description of Code

2.1. Header
Data Structures:

int free_machines

Global counter that keeps track the number of

available machines.

int mode

Global variable that keeps track the mode

(NONE, HARD, SOFT), which sets default by make

and overrides by config file.
vector <vector<int32_t>> free_racks

Global 2D vector that keeps track of the free

machines of each rack.

vector <vector<int32_t>> used_racks

Global 2D vector that keeps track of the used

machines of each rack.

unordered_map<int32_t, time_t> free_times

Global hash table that maps used machine to

its expected free time.
set<Job_S *> jobs

Global set of all waiting jobs.

mutex mtx

Global mutex to ensure synchronization on

resource allocation.

 struct Job_S {

JobID jobId;

job_t::type jobType;

int32_t k;

int32_t priority;

double duration;

double slowDuration;

double chosen_duration;

time_t added_time;

int32_t *machines;

 };

Dynamically allocated structure of job info.

2.2. Scheduling Algorithm

Initialization:

Our code reads the scheduling policy and rack

information from config file, and initializes mode as the

scheduling policy, free_machines as the total number of

machines, free_racks as the indices of available

machines and used_racks as empty 2D vector.

AddJob:

Our code first acquires mutex locks. It records

the added_time of the new job and adds the new job to

jobs set. It then calls TryToAllocate to see if resource

allocation is possible and releases the mutex locks.

FreeResources:

Our code first acquires the mutex lock. Then,

it places the freed machines from used_racks to

free_racks. Also, free_machines count is updated. Next,

it calls TryToAllocate to see if resource allocation is

possible. Lastly, it releases the mutex lock.

TryToAllocate:

First, our code tries to remove all time-out jobs

from jobs set. The timeout jobs are those jobs that have

condition of (maxT - duration) < (waited time in jobs

set). So, this can avoid wasting resources to run jobs

that will be killed anyways.

Then, depending on the scheduling policy, our

scheduler picks the earliest added job if the mode is

NONE or HETERGEN, picks the shortest duration job if

mode is SJF, or picks the highest utility job if the mode is

HARD or SOFT. For NONE scheduler, machines are

randomly picked from free_racks.

For HETERGEN scheduler, our code first checks

if preferred resources allocation is possible for the earliest

job. If preferred resources allocation is possible (GPU job

wants machines from first rack and MPI wants machines

from same rack), those resources are allocated. If preferred

resources allocation is not possible, we check the

condition (the minimum expected waiting time + duration)

< (slowDuration). If true, our code chooses to wait for next

free rack. If not, our code picks machines randomly across

different racks.

For SJF scheduler, our code first checks if

preferred resources allocation is possible for the shortest

duration job, and repeats above process if preferred

resources allocation is not possible.

For HARD and SOFT, to pick highest utility job,

our code first traverses all jobs to compute utility of each

job and free_machines count is used to skip those jobs that

can-not be fulfilled at the moment. Our code first checks if

preferred resources allocation is possible for each job. If

preferred resources allocation is possible, the utility is

computed with maxT - duration - (waited time in jobs set).

If preferred resources allocation is not possible, HARD

scheduler always chooses to wait for free rack while SOFT

scheduler computes the minimum expected waiting time

for the next available rack. If (the mini-mum expected

waiting time + duration) < (slowDura-tion), SOFT

scheduler chooses to wait for next free rack. If not, SOFT

scheduler computes utility as maxT - slowDuration -

(waited time in jobs set) and picks machines randomly

across different racks.

Once the earliest job, the shortest job or the

highest utility job is picked (depending on the mode),

our code allocates the free machines and moves them

from free_racks to used_racks. Then, the expected freed

time of those machines are stored in free_times such

that they can be used to compute the minimum

expected waiting time for next free rack. Also,

free_machines count is updated. The handled job is

then removed from jobs set. Finally, our code checks if

the jobs set is empty, and if not, it picks the new earliest

job or highest utility job to handle.

3. Non-preferred Resources Allocation &

Resources Allocation Delay

 Obviously, NONE scheduler does not have a

sense of preferred resources allocation. The HARD

scheduler always allocates preferred resources. So,

when only non-preferred resources are available, the

HARD scheduler chooses to wait for preferred

resources to be freed. On the other hand, when

preferred resources for a job are not available, the

HETERGEN, SJF, and SOFT schedulers evaluate the

expected waiting time for its preferred resources to

decide whether they should wait for preferred resources

or not.

 These 3 schedulers compare (the minimum

expected waiting time for preferred resources + fast

duration time) with (slow duration time). If former is

less than latter, it means that this job should wait for its

preferred resources. If not, non-preferred resources

allocation is decided.

Scheduling Policy

NONE HETERGEN SJF
(Mean Completion Time)

traceGPU-micr 122.319 97.874 97.70

traceMPI-min 188.855 147.258 146.33

traceMPI-c2x1-rho0.xx-

659.6147 431.45166 417.34616
batc

Table 1. Three Scheduling Policies

We see the performance of NONE scheduler

from above chart that the sense of preferred resources

allocation is very important in improving running time

as the jobs do not have to run in their slowDuration

most of the time. We see a rather similar performance

improvement for HETERGEN scheduler and SJF

scheduler, since they both adopt the same strategy in

delaying resources allocation. The difference between

their performances should explain whether job arrival

order or job duration order is more essential in

improving completion time. With above results, we see

job duration order is more essential.

HARD
traceCombined-c2x6- traceCombined-c2x4-

rho0.70 rho0.80

Mean Completion

378.688 529.429
Time

Total Utility 28745.916 38893.116

Table 2. Hard Scheduler Performance

SOFT
traceCombined- traceCombined-

c2x6-rho0.7 c2x4-rho0.8

Mean Completion

379.80 396.01
Tim

Total Utilit 28706.95 46631.29

Table 3. Soft Scheduler Performance

For HARD and SOFT schedulers, we see a huge

improvement in traceCombined-c2x4-rho0.80, but

essentially no difference in traceCombined-c2x6-rho0.70.

This behaviour is expected because preferred resources

are available most of the time for MPI jobs in trace-

Combined-c2x6-rho0.70, and so there is little influence of

deciding to allocate non-preferred resources. For

traceCombined-c2x4-rho0.80, the MPI jobs are added

more closely together and so their preferred resources are

not usually available.

Therefore, it is important for scheduler to be

capable to decide whether to allocate non-preferred

resources smartly. If the scheduler decides non-preferred

resources allocation for a MPI job, it means that its

completion time can be shortened and so it maximizes the

overall utility.

4. Job Starvation

For the HARD and the SOFT scheduler, the

low utility jobs are starved as more new jobs are added.

This starvation behaviour is expected since utility of

each job is inversely correlated to its waiting time in

jobs set, and so those new jobs are more likely to have

higher utility. Those low utility jobs eventually are

more likely to be killed by timeout errors. For the SJF

scheduler, the long duration jobs are starved as more

new short duration jobs are added. This starvation

behaviour also is expected since job duration of each

job is inversely correlated to its waiting time in jobs set,

and so those long duration jobs eventually are more

likely to be killed by timeout errors.

The NONE and HETERGEN schedulers do

not suffer from job starvation because each job is ran by

its arrival order and so no job is unfairly starved.

However, we see that the NONE scheduler performs

much worse than the utility based schedulers. So, we

believe that utility based job starvation is good for

overall completion time and utility since it allows

higher utility jobs to be completed more efficiently with

preferred resources.

NONE
traceCombined- traceCombined-

c2x6-rho0.7 c2x4-rho0.8

Mean Completion

519.20 887.16
Tim

Total Utilit 23827.83 18144.56

Table 4. None Scheduler Performance

5. Weaknesses

Our utility based scheduler is greedy so that it

always picks the highest utility job to maximize the

overall utility. However, the greedy approach does not

always give the most optimal solution. If the trace is

known to scheduler prior to running the jobs, the

scheduler can easily compute the optimal configuration

of running the jobs. Since this is unrealistic, greedy

approach is a good strategy to get near-optimal

solution.

We realized that job starvation is a big issue.

An easy way to fix this is to prioritize jobs with utility

getting close to 0 so that they can finish execution

before they get timeout errors. However, this sacrifices

the overall completion time and utility.

6. Designed Trace

Fig. 1 Designed Trace Workflow

The idea of the designed trace is illustrated

above. Within the time period of [0, T1], job1, job2,

...jobN are added. All of these jobs have long duration.

Within the period of [T1, T2], no more jobs are added.

We design our trace in the way that shortly before time

T2, some of those N jobs in jobs set will fail to have

sufficient time to complete execution such that its

utility reaches 0.

In other words, even if those jobs run, they

will still get timeout errors. For schedulers that do not

check this condition, those job will run. Then, at time

T2, a new job jobK is added. So, those old jobs will

block the re-sources that can be used to execute the new

job jobK. However, as our scheduler checks and

removes all those jobs from jobs set if waited_time +

execution_time > Max_T, those old jobs will be

removed so that the new job jobK will not be blocked,

thus improving the overall completion time and utility.

The experiment results are shown as follows. The

highlighted job result in both cases is for the newly

added job, and we do see a huge performance

difference when those already-timeout waiting jobs are

discarded smartly.

Fig. 2 Scheduler removed already-timeout waiting jobs

Fig. 3 New job is blocked by soon-timeout waiting jobs

The designed trace is included in the report

folder, and it is under the “evidence/phase3/designed

_trace/” directory. The file “results_designedTrace_

good.analysis” corresponds to Fig. 2; file “results_

designedTrace_bad_analysis” corresponds to what is

illustrated in Fig. 3.

7. Reference
1. Vavilapalli, Vinod Kumar, et al. "Apache Hadoop

yarn: Yet another resource negotiator."

Proceedings of the 4th annual Symposium on

Cloud Computing. ACM, 2013.

