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Introduction 

Simply put, my translate function is intend to 
map a virtual address to physical address on a 
SSD during a read/write operation. Also, my 
algorithm does not rely on any certain SSD 
configuration, and it runs properly across all 
reasonable SSD configurations. The deeper 
purpose of my translate function is to prolong 
the life of SSD. Given that each block in SSD 
has a certain life span (erase limit), it is very 
essential that my algorithm does a good job to 
serve as many read/write as possible. Once a 
write fails, it signifies the end of life of the 
SSD. To handle this task, I have experimented 
and tested many different schemes. 

 

1. Code Organization 

First off, let’s review the translation process of 
my algorithm. For a given SSD configuration, I 
have some range of physical address that 
belongs to the data blocks. The rest belongs to 
over provisioning blocks. Within the over 
provisioning blocks, there are only log blocks. 
Please note that I have decided to remove 
cleaning blocks, detailed reasoning is provided 
in a later section. 

 

1.1. Algorithm 

To initialize the translation process, I have to 
make sure the erase count of each blocks is 
zero. The logical address to physical address is 
mapped directly (evolves to dynamic mapping 
later on). All data blocks have no mapped log 
blocks, and all pages in SDD are in empty 
state. At last, the over provisioning area is 
partitioned into blocks are properly stored for 
later use as log blocks. 

 

To service a read operation, my algorithm 
checks if the page is written. If the page is 
empty, the operation fails. Otherwise, my 
algorithm calculates the corresponding physical 
data block address. Then, it checks if there is a 

log block mapped to this data block. If there is 
not a mapped log block, I know that the latest 
page must be in the data block. If there is a 
mapped log block, it first check in the log block 
for the page. If the page is in the log block, I 
know that the latest page must be in log block. 
Otherwise, the latest page must be in data 
block. 

 

To service a write operation, my algorithm first 
check if the page is empty. If the page is empty, 
it calculates the data block address and makes 
sure the first written page must go to the data 
block. Otherwise, I know that the page in data 
block must be written, and so it checks whether 
there is a mapped log block. If there is not a 
mapped log block, it attempts to map a free log 
block to the data block. If it fails to do so, my 
algorithm officially declares the SSD is over. If 
there is a mapped log block, it then attempts to 
find a free page in the log block. If it fails, then 
it attempts to clean the data block and the log 
block. If the cleaning fails, then my algorithm 
declares the SSD is over.  

 

Before cleaning, my algorithm always attempt 
to remap data block and to remap log block 
when those blocks are close to erase limit. The 
remapping scheme is a bit complicated and will 
be discussed in a later section. For cleaning, 
my algorithm always attempt to find an empty 
data block to serve as a cleaning block. 
Essentially, latest copy of the pages from both 
data block and log block are moved to the 
empty data block, and eventually moved back 
to the data block. Detailed reasoning about the 
cleaning procedure will be provided in a later 
section. 

 

The decision of declaring the SSD is over is not 
easy to make. This only happens when my 
translation process cannot find a space to write 
the new page. It is obvious to see that the 



threshold of my algorithm lies in the amount of 
remaining free log blocks. Hence, the key of 
my algorithm is to generate more log blocks 
when free log blocks are running out.  

 

1.2. Data Structure 

My algorithm uses an unsigned int array with 
each bit indicating whether a page is empty or 
not. Another unsigned int array to record the 
erase count for each physical block. Also, I 
have a std vector to store all the remaining over 
provisioning blocks. More interesting, I have a 
signed int array that stores the mapping from 
logical block to physical data block, where each 
element is an offset such that the offset 
indicates the signed difference of the position 
between the logical block and physical data 
block. Similarly, I have a signed int array that 
stores the mapping from data block to log 
block, where each element is an offset such that 
the offset indicates the signed difference of the 
position between the data block and log block. 

 

2. Policy Decisions 

Below I would discuss a few essential 
decisions in my implementation. 

 

2.1. No Cleaning Blocks 

The original purpose of the cleaning blocks is 
reserved for moving pages around in the 
cleaning procedure. I see it as stealing over 
provisioning blocks away from log blocks. 
Cleaning blocks are useless and when there is 
no cleaning involved. To maximize the number 
of writes serviced, I decided to remove 
cleaning blocks. Then, what to use for moving 
pages around during cleaning? I decided to 
locate the cold data, which are the empty data 
blocks lying around. I use them as cleaning 
blocks to move data and erase them afterwards. 
Since they are originally empty, it does not 
increase write amplification of the cleaning 
procedure. It is true that this will increase the 
erase count of the cold data. Since I want to 
distribute the number of erase fairly among the 
physical blocks, it seems only fair to make use 
of the cold data. 

 

2.2. No Cleaning Policy 

With the remapping and shuffling scheme 
properly implemented, the cleaning policy is 
proven to be redundant by repeated testing as it 
only causes necessary write amplifications. 

 

3. Optimizations 

Through repeated testing, here are the 
optimizations in my algorithm. 

 

3.1. Dynamic Mapping 

There are two types of dynamic mappings in 
my algorithm. The first type is same block type 
remapping. My algorithm identifies the swap 
the cold and hot data blocks and swap the cold 
and hot log blocks. The main theory is to 
evenly distribute the erase count among all the 
physical blocks. Therefore, physical blocks 
with uneven erase counts will be remapped to 
prolong the life span of the SSD. 

 

The second type is different block type 
remapping. My algorithm attempts to identify 
the cold data blocks and swap them with hot 
log blocks. Because of the limited amount of 
over provisioning blocks, it is essential to 
always maintain a sufficient amount of log 
blocks. Therefore, while the erase count of the 
log blocks are rising, it is wise to swap them 
with the data blocks with low erase count such 
that my algorithm only asks for a free log block 
unless absolutely necessary. 

 

3.2. Write Amplification 

To reduce unnecessary writes, I have decided 
to remove the cleaning policy. There are test 
results below to show that my algorithm’s 
write amplification is usually very close to 
1.00. 

 

3.3. Wear Leveling 

To keep track of wear leveling, I have managed 
to remap and shuffle physical blocks as 
described in an earlier section. The main theory 
is to distribute the number of erases among 
physical blocks as evenly as possible. 

 

3.4. Memory Size 



I have put many thoughts into reducing 
memory usage in my implementation. For 
starter, I do not use any structs that may cause 
fragmentations in memory if there are many of 
them with unaligned size. Also, I do not use 
pointers because pointers may be 64 bits in 
certain systems. Moreover, I do not 
dynamically allocate memory unless it is 
absolutely necessary (which is almost never). I 
always declare local variables such that they 
either on the stack or in registers and so they 
are freed automatically when that function 
returns. 

 

More obviously, I use a bit to indicate the 
emptiness for each page. Besides, I have 
managed to reduce the size of my pages 
configuration in a log block by allocating it only 
as needed. Observe that I use std string for the 
pages configuration, and so my algorithm 
appends a new page to the string whenever a 
new page is written to log block. Hence, I do 
not pre-allocate the page configurations for all 
the log block initially, and so if no log block is 
used at all, there will be no memory 
consumption in pages configurations. 

 

4. Test Results 

Tests # of W W.A. # E Mem Score 

1 4276 1.000 5 1KB 1.037 

2 38946 1.000 5 1KB 1.991 

3 38946 1.000 10 1KB 2.000 

4 38912 1.000 5 4KB 1.000 

5 10305 1.034 5 1KB 0.023 

6 77697 1.949 5 4KB 1.194 

7 38946 1.000 5 1KB 1.991 

8 10305 1.034 5 4KB 0.023 

9 10274 1.000 5 136KB 0.895 

10 38946 1.000 5 1KB 1.991 

11 17654 2.855 5 1KB 0.057 

12 77959 1.000 5 1KB 1.907 

Total 14.1 

 

5. Conclusion 

I am most proud of my algorithm’s memory 
usage since it is surprisingly low. It proves that 
those strategies I mentioned in previous section 
do work. With the unnecessary cleaning policy 
removed, I have managed to reduce the write 
amplification as well. 

 

Through repeated testing, I have identified the 
weakness of my algorithm lies in the fact that 
the log blocks run out while there is no 
available data blocks to shuffle back. Looking 
back, I would develop a more sophisticated 
remapping scheme such that the shuffling is 
done in a more appropriate time and location. 

 

The strength in my algorithm definitely lies in 
the remapping and shuffling scheme. Most 
tests provided issue writes randomly and 
evenly on all blocks in SSD. However, this is 
rarely the case in reality. If only a certain area 
of the SSD is written repeatedly, my algorithm 
can always identify those empty data blocks 
lying around and shuffle them to re-supply log 
blocks. Therefore, the remapping and shuffling 
scheme of my algorithm can prolong the life 
span of the SSD much greatly. 

 


