
Solid State Disk Flash Translation Layer

HingOn Miu (hmiu)

Carnegie Mellon University

Introduction

Simply put, my translate function is intend to
map a virtual address to physical address on a
SSD during a read/write operation. Also, my
algorithm does not rely on any certain SSD
configuration, and it runs properly across all
reasonable SSD configurations. The deeper
purpose of my translate function is to prolong
the life of SSD. Given that each block in SSD
has a certain life span (erase limit), it is very
essential that my algorithm does a good job to
serve as many read/write as possible. Once a
write fails, it signifies the end of life of the
SSD. To handle this task, I have experimented
and tested many different schemes.

1. Code Organization

First off, let’s review the translation process of
my algorithm. For a given SSD configuration, I
have some range of physical address that
belongs to the data blocks. The rest belongs to
over provisioning blocks. Within the over
provisioning blocks, there are only log blocks.
Please note that I have decided to remove
cleaning blocks, detailed reasoning is provided
in a later section.

1.1. Algorithm

To initialize the translation process, I have to
make sure the erase count of each blocks is
zero. The logical address to physical address is
mapped directly (evolves to dynamic mapping
later on). All data blocks have no mapped log
blocks, and all pages in SDD are in empty
state. At last, the over provisioning area is
partitioned into blocks are properly stored for
later use as log blocks.

To service a read operation, my algorithm
checks if the page is written. If the page is
empty, the operation fails. Otherwise, my
algorithm calculates the corresponding physical
data block address. Then, it checks if there is a

log block mapped to this data block. If there is
not a mapped log block, I know that the latest
page must be in the data block. If there is a
mapped log block, it first check in the log block
for the page. If the page is in the log block, I
know that the latest page must be in log block.
Otherwise, the latest page must be in data
block.

To service a write operation, my algorithm first
check if the page is empty. If the page is empty,
it calculates the data block address and makes
sure the first written page must go to the data
block. Otherwise, I know that the page in data
block must be written, and so it checks whether
there is a mapped log block. If there is not a
mapped log block, it attempts to map a free log
block to the data block. If it fails to do so, my
algorithm officially declares the SSD is over. If
there is a mapped log block, it then attempts to
find a free page in the log block. If it fails, then
it attempts to clean the data block and the log
block. If the cleaning fails, then my algorithm
declares the SSD is over.

Before cleaning, my algorithm always attempt
to remap data block and to remap log block
when those blocks are close to erase limit. The
remapping scheme is a bit complicated and will
be discussed in a later section. For cleaning,
my algorithm always attempt to find an empty
data block to serve as a cleaning block.
Essentially, latest copy of the pages from both
data block and log block are moved to the
empty data block, and eventually moved back
to the data block. Detailed reasoning about the
cleaning procedure will be provided in a later
section.

The decision of declaring the SSD is over is not
easy to make. This only happens when my
translation process cannot find a space to write
the new page. It is obvious to see that the

threshold of my algorithm lies in the amount of
remaining free log blocks. Hence, the key of
my algorithm is to generate more log blocks
when free log blocks are running out.

1.2. Data Structure

My algorithm uses an unsigned int array with
each bit indicating whether a page is empty or
not. Another unsigned int array to record the
erase count for each physical block. Also, I
have a std vector to store all the remaining over
provisioning blocks. More interesting, I have a
signed int array that stores the mapping from
logical block to physical data block, where each
element is an offset such that the offset
indicates the signed difference of the position
between the logical block and physical data
block. Similarly, I have a signed int array that
stores the mapping from data block to log
block, where each element is an offset such that
the offset indicates the signed difference of the
position between the data block and log block.

2. Policy Decisions

Below I would discuss a few essential
decisions in my implementation.

2.1. No Cleaning Blocks

The original purpose of the cleaning blocks is
reserved for moving pages around in the
cleaning procedure. I see it as stealing over
provisioning blocks away from log blocks.
Cleaning blocks are useless and when there is
no cleaning involved. To maximize the number
of writes serviced, I decided to remove
cleaning blocks. Then, what to use for moving
pages around during cleaning? I decided to
locate the cold data, which are the empty data
blocks lying around. I use them as cleaning
blocks to move data and erase them afterwards.
Since they are originally empty, it does not
increase write amplification of the cleaning
procedure. It is true that this will increase the
erase count of the cold data. Since I want to
distribute the number of erase fairly among the
physical blocks, it seems only fair to make use
of the cold data.

2.2. No Cleaning Policy

With the remapping and shuffling scheme
properly implemented, the cleaning policy is
proven to be redundant by repeated testing as it
only causes necessary write amplifications.

3. Optimizations

Through repeated testing, here are the
optimizations in my algorithm.

3.1. Dynamic Mapping

There are two types of dynamic mappings in
my algorithm. The first type is same block type
remapping. My algorithm identifies the swap
the cold and hot data blocks and swap the cold
and hot log blocks. The main theory is to
evenly distribute the erase count among all the
physical blocks. Therefore, physical blocks
with uneven erase counts will be remapped to
prolong the life span of the SSD.

The second type is different block type
remapping. My algorithm attempts to identify
the cold data blocks and swap them with hot
log blocks. Because of the limited amount of
over provisioning blocks, it is essential to
always maintain a sufficient amount of log
blocks. Therefore, while the erase count of the
log blocks are rising, it is wise to swap them
with the data blocks with low erase count such
that my algorithm only asks for a free log block
unless absolutely necessary.

3.2. Write Amplification

To reduce unnecessary writes, I have decided
to remove the cleaning policy. There are test
results below to show that my algorithm’s
write amplification is usually very close to
1.00.

3.3. Wear Leveling

To keep track of wear leveling, I have managed
to remap and shuffle physical blocks as
described in an earlier section. The main theory
is to distribute the number of erases among
physical blocks as evenly as possible.

3.4. Memory Size

I have put many thoughts into reducing
memory usage in my implementation. For
starter, I do not use any structs that may cause
fragmentations in memory if there are many of
them with unaligned size. Also, I do not use
pointers because pointers may be 64 bits in
certain systems. Moreover, I do not
dynamically allocate memory unless it is
absolutely necessary (which is almost never). I
always declare local variables such that they
either on the stack or in registers and so they
are freed automatically when that function
returns.

More obviously, I use a bit to indicate the
emptiness for each page. Besides, I have
managed to reduce the size of my pages
configuration in a log block by allocating it only
as needed. Observe that I use std string for the
pages configuration, and so my algorithm
appends a new page to the string whenever a
new page is written to log block. Hence, I do
not pre-allocate the page configurations for all
the log block initially, and so if no log block is
used at all, there will be no memory
consumption in pages configurations.

4. Test Results

Tests # of W W.A. # E Mem Score

1 4276 1.000 5 1KB 1.037

2 38946 1.000 5 1KB 1.991

3 38946 1.000 10 1KB 2.000

4 38912 1.000 5 4KB 1.000

5 10305 1.034 5 1KB 0.023

6 77697 1.949 5 4KB 1.194

7 38946 1.000 5 1KB 1.991

8 10305 1.034 5 4KB 0.023

9 10274 1.000 5 136KB 0.895

10 38946 1.000 5 1KB 1.991

11 17654 2.855 5 1KB 0.057

12 77959 1.000 5 1KB 1.907

Total 14.1

5. Conclusion

I am most proud of my algorithm’s memory
usage since it is surprisingly low. It proves that
those strategies I mentioned in previous section
do work. With the unnecessary cleaning policy
removed, I have managed to reduce the write
amplification as well.

Through repeated testing, I have identified the
weakness of my algorithm lies in the fact that
the log blocks run out while there is no
available data blocks to shuffle back. Looking
back, I would develop a more sophisticated
remapping scheme such that the shuffling is
done in a more appropriate time and location.

The strength in my algorithm definitely lies in
the remapping and shuffling scheme. Most
tests provided issue writes randomly and
evenly on all blocks in SSD. However, this is
rarely the case in reality. If only a certain area
of the SSD is written repeatedly, my algorithm
can always identify those empty data blocks
lying around and shuffle them to re-supply log
blocks. Therefore, the remapping and shuffling
scheme of my algorithm can prolong the life
span of the SSD much greatly.

