

Dude! – the Smart Speaker
Final Report

Team Members

Jing Huang

JingTao Xu

An Wu

HingOn Miu

Prefatory Information

Our speakers are connected through a central server so that information

can be shared remotely. Furthermore, each speaker has its own local

computation for basic functionality to provide services like personal virtual

assistant. Our device essentially contains a Raspberry Pi 2, a microphone, a

speaker, a camera, a temperature sensor and a light sensor. Obviously, the

Raspberry Pi 2 is responsible for local computation and upload/download

information to server. The microphone and the speaker are used for language

processing. Basically, user commands are recorded by the microphone and the

audio files are uploaded to Google server for speechtotext translation. Then,

our speaker’s text responses are again uploaded to Google server for textto

speech audio synthesis and the audio files returned are played back to the user.

The camera is responsible for facial recognition so that the device is able to

authenticate user identity. Last but not least, the temperature sensor and the light

sensor are used to provide precise quantitative recordings when user feels cold

or dark. The central server stores a user profile database so that each user is able

to interact with our speaker on personal matters.

1. Project description

The goal of our project is to develop a smart speaker placed in common

household rooms that can listen to human voice 24/7, and respond to commands like

Siri on Apple iPhone and Echo developed by Amazon. Basically, it is able to perform

tasks like searching Wikipedia and weather on the internet to respond to human

voice. Moreover, the speaker should also be able to “talk to” other speakers remotely.

In other words, the speaker can share messages and information like temperature,

brightness and user profiles with other speakers through WiFi. In addition, our

speaker is able to use facial and speaker recognition to detect different users, thus it

can set up different profiles for different users.

The speaker is composed of multiple essential sensors (i.e microphone,

temperature sensor, and brightness sensor), an actuator (i.e speaker), and a data

centre processing unit on the hardware side. We will also need to write proper

software to enable functionalities like speech recognition and data sharing.

2. Design requirements
2.1. Explicit requirements from the project specifications

1. Dude should detect and listen to human voice in a room 24/7.

2. Dude should use speech recognition to understand commands.

3. Dude should use facial recognition to recognize people.

4. Dude should use textdependent speaker recognition to differentiate users.

5. Dude should use web APIs to respond to voice query.

6. Dude should detect environments using various sensors.

a. Temperature

b. Brightness

c. Sound

7. Multiple Dude should be able to communicate over WiFi.

http://www.amazon.com/oc/echo/

2.2. Implied design requirements

1. Dude should use Google Speech API to convert voice into text.

2. Dude should use Google Translate API to convert text into human voice.

3. Dude should use Wikipedia API and weather API to respond to queries.

4. Dude should use OpenCV library to perform facial recognition.

5. Dude should use Fast Fourier Transform and other speech algorithm to

perform speaker authentication.

3. Architecture

4. Design Trade-off Studies

4.1. Platform

4.1.1. Microprocessor vs. Mini PC

In terms of hardware platform, we can either work on a microprocessor or

a mini PC. Here is a comparison between the two platforms:

 Microprocessor Mini PC

Computation Power Low Relatively High

(Processor, RAM,

Memory, etc.)

Interfacing with Easy Need Additional Tools

Sensors

Installation of Need to install operating Easy

Softwares system

Price $35 to $45, can have $100 to $200

 multiple

Available Systems Linux, some with Linux or Windows

 Windows but need

 additional package

Using a mini PC makes it easier to integrate functionalities such as motion

sensing with Kinect and projecting data/pictures on the wall. Kinect works on

Windows machine and most microprocessors support Linux. Also, mini PC can do

more complex computation and has larger memory. Those features are preferable for

speech recognition and interpretable applications. But we eventually decide to work

with microprocessors because they are more accessible. And for our project, we need

to demo at least two in a household environment. Second, microprocessors have easy

interfaces to communicate with sensors and actuators, as we have at least 5

components to connect with the core hardware platform including Wifi module,

microphone, speaker, brightness sensor and temperature sensor. Lastly, if our product

is going to be promoted on the market, a microprocessor is much more portable and

affordable.

To address the problem that a microprocessor not being able to do very heavy

computations, we decided to send data to a remote server or use cloud computation

whenever possible. This design trade-off will be covered in section 4.3.

4.1.2. BeagleBone Black vs. Raspberry Pi

We have two common microprocessors to pick from: Raspberry Pi and

Beagle Bone Black. A comparison between the two is provided here.

 BeagleBone Black Raspberry Pi

Base Price 45 35

Processor 1GHz TI Sitara 700 MHz

 AM3359 ARM Cortex ARM1176JZFS

 A8

RAM 512 MB DDR3L @ 400 512 MB SDRAM @ 400

 MHz MHz

Storage 2 GB onboard eMMC, SD

 MicroSD

Video Connections 1 MicroHDMI 1 HDMI, 1 Composite

Supported 1280×1024 (5:4), Extensive from 640×350

Resolutions 1024×768 (4:3), up to 1920×1200, this

 1280×720 (16:9), includes 1080p

 1440×900 (16:10) all at

 16 bit

Audio Stereo over HDMI Stereo over HDMI,

 Stereo from 3.5 mm jack

Systems Angstrom (Default), Raspbian

 Ubuntu, Android, (Recommended),

 ArchLinux, Gentoo, Ubuntu, Android,

 Minix, RISC OS, ArchLinux, FreeBSD,

 others… Fedora, RISC OS,

 others…

Power Draw 210460 mA @ 5V 150350 mA @ 5V

 under varying under varying conditions

 conditions

GPIO Capability 65 Pins 8 Pins

Peripherals 1 USB Host, 1 2 USB Hosts, 1

 MiniUSB Client, 1 MicroUSB Power, 1

 10/100 Mbps Ethernet 10/100 Mbps Ethernet,

 RPi camera connector

Overall, BeagleBone Black has a faster processor (1 GHz vs. 700 MHz) and

more storage (2GB and SD vs. SD). While both microprocessors support Ubuntu,

BeagleBone black also support Windows with a Windows package. Both

microprocessors are relatively cheap, but BeagleBone Black costs ten extra dollars.

While Raspberry Pi has been in the market for a much longer time, so there are better

documentation and support from the online community. In the end, we decided to go

with Raspberry Pi, considering that there are plenty relevant projects done by other

developers.

4.2.Voice Recognition: Google Voice API vs. Dragon SDK vs. CMU
Sphinx

Implementing speech recognition is a big software decision. It requires a well-

supported library to build our own application so that it can provide higher accuracy

rate in recognition. In considering this problem, the library needs to be user-friendly

and easily expendable, along with providing fast processing speed.

There are two open-sourced APIs for Google voice that use Java

(GoogleVoiceJava) and Python (PolyGoogleVoice). However, both of them have

limited functionality that are only usable in operations with phone communication

such as placing calls, sending SMS and searching for files within Google accounts.

Another library is called Google Web Speech API, which is more suitable for our

project. It uses Google Voice’s voice recognition engine and it allows programmers

to build websites that allow voice input for forms and sending emails. Through

experimenting with Web Speech API, we discovered that it has relatively high

accuracy in English vocabularies and the service responds reasonably fast.

Dragon NaturallySpeaking is a speech recognition software package that only

runs on Windows PC (7 or 8) or Mac. This software is commonly used in product for

voice control computer operations such as opening file, searching internet, and

checking the calendar, etc. Dragon NaturallySpeaking Software developer kit (SDK)

can also be used to add speech recognition to applications. In addition to the SDK,

there is a Python framework that uses Dragon NatuallySpeaking as speech

recognition engine and it allows developers to write scripts and macros. This

software is very frequently adopted by programmers and it has a fairly good

accuracy in speech recognition. However, the license comes with a cost of at least

$99.99, and it requires a minimum of 2.2 GHz processing speed, 4GB memory space

and 2GB RAM for designated hardware platform.

Another option we have is CMU Sphinx. It is an well-known open source

toolkit with various models to build speech recognition applications. For our use, it

is better to go with its Pocketsphinx package, since it is much faster in reaction time

and much smaller in installation size for higher portability. CMU Sphinx has a

support community for developers. There are plenty documentations of how to use

Pocketsphinx across various platforms, especially for Linux. Although CMU Sphinx

supports multiple operating systems, we think it is best to go with Linux to get better

support online.

With these three options, we ruled out Dragon NaturallySpeaking because it

is costly and it has stricter requirements on the hardware platform. Ultimately, we

decided to use Google Web Speech API because it is fairly simple to use. Then, we

have to implement exactly how to record and upload audio recordings as HTTP web

requests. We also have to implement software logics for translating texts into

commands. There are some other potential audio problems we need to consider such

as filtering out background noises from audio microphone input.

4.3.Computation Location: On Chip vs. Cloud

To implement speech recognition and language processing, we can either run

these programs locally in the microprocessor processing unit, or we can upload

audio recordings to an online service or a remote machine for processing. Running

applications locally requires installation of multiple dependent libraries on our

device. Anyhow, Raspberry Pi is still not an ideal platform for running large

computations and installing large libraries with many dependencies.

Uploading audio recordings to an online service can solve our problems.

Amazon Echo adopts this method. It sends audio recordings to Amazon Web Service

(AWS) and fetches the interpreted audio texts. We could do the same but the service

cost is relatively high. It costs about $0.5 per hour to use an AWS EC2 instance.

Since affording to rent an AWS EC2 machine 24/7 is not ideal, it could take long

time to set up the speech recognition application each time an audio processing

request presents. This is quite detrimental for our speech application, as it always

requires immediate response.

Using a remote machine to do such processing is a better option. Therefore we

decide to upload audio recordings and user data to a remote computer. However,

using full online application is still a long way to go if our product is ultimately being

widely manufactured.

5. System description

5.1. High-level Description

5.2. Raspberry Pi

This is the central hardware platform in our design. It costs about only thirty

five dollars, but it is able to perform most computation tasks in our design. Raspberry

Pi is a mini computer of pocket size but it is quite powerful. It supports Linux and

has 8 GPIO pins, UART, I²C bus, SPI bus with two chip selects, and I²S. Generic

USB keyboards and mice are also compatible with the Raspberry Pi, and this makes

development much easier. The video controller is capable of standard modern TV

resolutions, such as HD and Full HD. With Ethernet port, we can easily upload the

data collected from different sensors to the server as well as get feedback from the

server, and then process the fetched data to control various actuators to perform tasks

accordingly.

5.3. Sensors

5.3.1. Microphone

We use a microphone to collect sound input from user, and transfer the audio

signal to our Raspberry Pi for speech processing. Also, we need to connect the

microphone to an opamp so that our device can detect soft sounds.

5.3.2. Brightness and Temperature sensor

We plan to use humidity and temperature sensors to capture the relative room

humidity and temperature. The sensor uses a digital 2wire interface and it offers

high precision with excellent long term stability. The sensor collects data

continuously and sends the data to the central server. While a user query our speaker

for temperature or humidity, our chip converts the related sensor data into either

sound or picture and sends it through an actuator (i.e. speaker or projector).

5.3.3 Raspberry Camera

We plan to use a Raspberry Pi camera to capture the images of users and

perform facial recognition accordingly. It is a customized camera for Raspberry Pi.

When a user uses our speaker for the first time, Raspberry Pi will take a few photos

and run face detection algorithm on the photos to isolate the facial regions and set up

new profile for the user. When running facial recognition, it takes the captured photo

for comparing to the other photos of all previously built user profiles in our central

database. A high confidence score resulted from the recognition algorithm alerts our

speaker that a good user profile match is found.

5.4. Actuators

5.4.1. Speaker

Raspberry Pi gathers information about the user’s query and stores the result

into audio forms using cloud computing. Those audio signals are going to be

transmitting to all other speakers.

5.4.2. Network & Server

After the user makes a query, the central microprocessor chip sends the

recoded audio data to Google voice server, and it waits for the response. Then, the

returned translated information is parsed into strings. The central chip either process

the query locally (i.e. the room temperature and humidity) or search the query

keywords on the internet through WiFi connection. When search result is found, it

is once again passed to Google voice server for audio synthesis. Finally, the

synthesized audio of search result is transmitted to user by our speaker.

6. Project management

6.1. Schedule

Week Hardware Tasks to Complete Software

1 ● Familiarize with ● Put proposal information on

 components’ datasheets website

 ● Build schematics

2 ● Build schematics ● Web Speech API

 ● Order components

3 ● Wire components ● Web Speech API

4 ● Debug ● Write device logic to test

 functionality

5 ● Order components for ● Add functionalities

 second unit

6 ● Wire components ● Setup server

 7 ● Add customized PCB ● Make sensors work

8 ● Install OpenCV

9 ● Include camera ● Add facial recognition

10 ● Debug facial recognition

6.3. Budget

6.3. Risk management

6.3.1. Design risks

According to our professor, most microphones are proximity based, so it takes

some efforts to find a proper microphone sensor that can listen across a room.

6.3.2. Resource risks

Since it requires at least 2 units of our speakers to demo in a household

setting, the first prototype may fail due to unpredictable hardware issues. So, we

plan to implement only the hardware resources for the first unit from the beginning,

and use a server to simulate the second unit for development purpose. If the first

prototype is successful, then we would move on and develop more units.

7. Evaluation

To better test the accuracy of our speaker’s speech recognition, we invite

random testers to speak the hotword “dude” in turns, and count the number of

successful hotword activation. Also, we have to fairly evaluate if the speaker

authenticates a new user as “unknown” and attempts to build a new user profile for

each tester. The result we collected is quite pleasing, as 4 out of 5 random testers are

recognized as “unknown”. Though one of the testers is improperly recognized as an

another tester, we speculate this voice authentication failure is due to these two

testers are both males and so have similar voice features.

Next, we invite the same testers, who have successfully built their user

profiles, to repeat the hotword in turn. The result we collected is quite satisfactory,

since 3 out of 5 testers are successfully authenticated. Although one tester is

authenticated as “unknown”, we speculate this authentication failure is due to that

this tester speaks in an drastically different tone. Considering that this is not a signal

related project, we are fairly satisfied with the speaker authentication results.

8. Conclusions

8.1. Lessons Learned

The first important lesson is to always backup our software and keep notes of

the hardware configuration steps. Our Raspberry Pi kernel had multiple times

software panics throughout the project, and all hardware configurations on the device

were lost. It took at least two hours to reinstall the operating system and reconfigure

everything properly for each hardware failure. Fortunately, we backup our software

regularly with Git, and so we did not have to rewrite any software even with all those

hardware crashes.

Another important lesson is to design a better user interface. Although we

tested our device repeatedly and we are very familiar with how to use the device, we

did not give enough thoughts on how to make our device a lot more user friendly such

that any new user can learn to use our device quickly. So, instead of spending more

time on software functionalities, we should spend time to redesign the user interface

of the device to make it more accessible for common people.

The last lesson is that the product package presentation is very important.

Initially, we did not have any extra aesthetic design for our device. Our speaker was

just a bunch of PCB hardware with wires all over one another, so the appearance was

not very attractive. Then, one of our team members suggested we could do something

creative and so we decided to put our speaker in a giant Teddy bear. The final

presentation was pretty good, since our speaker successfully attracted many audience

in our public demo as many of them are young ladies.

8.2. What would we do differently?

We would have use the central server to do facial recognition instead of

wasting computation power of our Raspberry Pi. The library we use for facial

recognition is called OpenCV. It could take up to 5 hours to install on Raspberry Pi.

OpenCV generally requires lots of hardware resources (memory, processors, etc.).

During our experiments, it is the facial recognition algorithm that causes kernel

panics. And so, we would have to reinstall OpenCV after each panic. It should run

better on server, and its computation time would be shortened as well.

8.3. Future Works

If we were to proceed from our current state of development and use our

device as the basis for a startup company, we would have to implement more basic

functionalities so that our speaker can do a better job serving as a virtual assistant.

Furthermore, we would package our device better so that it has a more attractive

appearance. Currently, the wirings of our hardware are exposed, so the speaker does

not look pretty enough to be sold in open market. With a better packaging and more

well-rounded software functionalities, we believe our speaker is a great deal.

9. Related Work

Our idea is inspired by Amazon Echo. Amazon Echo is designed to interact

with user information, online music, news, weather, and much more. It begins

listening to commands as soon as it detects the hotword Alexa. As Echo detects

the hotword, its LED lights up and streams audio commands to its cloud, in which

the Amazon Web Services recognize and respond to user’s query. For example,

Amazon Echo can also play songs and manage everyday ToDo lists.

Unlike Amazon Echo, our speaker has a variety of customized sensors and

actuators. Moreover, it builds personal profiles for different users so that it

authenticates users using voice and facial recognition.

10. References

I. "BeagleBone Black." Black. N.p., n.d. Web. 08 Feb. 2015. <

http://beagleboard.org/BLACK>.
II. "Beaglebone Black." DEV12076. N.p., n.d. Web. 08

Feb. 2015. <https://www.sparkfun.com/products/12076
>.

III. "Humidity and Temperature Sensor SHT15." COM08227. N.p., n.d. Web.
09 Feb. 2015. <https://www.sparkfun.com/products/8227>.

IV.
"Kinect." Wikipedia. Wikimedia Foundation, n.d. Web. 09
Feb. 2015.

 <http://en.wikipedia.org/wiki/Kinect>.
V. "Speaker 0.5W (8 Ohm)." COM09151. N.p., n.d. Web. 09

Feb. 2015. <https://www.sparkfun.com/products/9151>.

VI.
"AAXA P2 Pico Projector LCoS Based Handheld Pocket Projector LED Micro
Projector."

N.p., n.d. Web. 09 Feb. 2015. <
http://www.aaxatech.com/products/p2_pico_projector.htm>.

VII.
"How to Choose the Right Platform: Raspberry Pi or BeagleBone Black?" Make.
N.p., 25 Feb.

 2014. Web. 09 Feb. 2015. <http://makezine.com/
 magazine/howtochoosetherightplatformraspberrypiorbeagleboneblack/>.

VIII.
"Dragon Software Developer Kits." Dragon. N.p., n.d. Web. 09
Feb. 2015.

 <http://www.nuance.com/fordevelopers/dragon/index.htm>.
IX. "T4ngo/dragonfly." GitHub. N.p., n.d. Web. 09 Feb. 2015.

 <https://github.com/t4ngo/dragonfly>.
X. 12, Dragon Naturallyspeaking. DATASHEET (n.d.): n. pag. Web. <

http://www.nuance.com/
ucmprod/groups/dragon/@webenus/documents/webasset/nc_008811.pdf>.

XI. "ILA Voice Assistant." CMU Sphinx. N.p., n.d. Web. 09 Feb. 2015.
 <http://cmusphinx.sourceforge.net/>.
XII. "Amazon Echo FAQs." Amazon.com Help:. N.p., n.d. Web. 09 Feb. 2015.

<http://www.amazon.com/gp/help/customer/display.html?nodeId=201602230
>.

XIII.
"AWS | Amazon Elastic Compute Cloud (EC2) Scalable Cloud Hosting."
Amazon Web

 Services, Inc. N.p., n.d. Web. 09 Feb. 2015. <http://aws.amazon.com/ec2/>.
XIV. "Speaker 0.5W (8 Ohm)." COM09151. N.p., n.d. Web. 11 Feb. 2015.

 <https://www.sparkfun.com/products/9151>.

XV.
"Humidity and Temperature Sensor SHT15." COM08227. N.p., n.d. Web. 11
Feb. 2015.

 <https://www.sparkfun.com/products/8227>.
XVI. "Electret Microphone." COM08635. N.p., n.d. Web. 11 Feb. 2015.

 <https://www.sparkfun.com/products/8635>.

http://beagleboard.org/BLACK
http://beagleboard.org/BLACK
https://www.sparkfun.com/products/12076
https://www.sparkfun.com/products/8227
http://en.wikipedia.org/wiki/Kinect
https://www.sparkfun.com/products/9151
http://www.aaxatech.com/products/p2_pico_projector.htm
http://www.aaxatech.com/products/p2_pico_projector.htm
http://makezine.com/magazine/how-to-choose-the-right-platform-raspberry-pi-or-beaglebone-black/
http://makezine.com/magazine/how-to-choose-the-right-platform-raspberry-pi-or-beaglebone-black/
http://www.nuance.com/for-developers/dragon/index.htm
https://github.com/t4ngo/dragonfly
http://www.nuance.com/ucmprod/groups/dragon/@web-enus/documents/webasset/nc_008811.pdf
http://www.nuance.com/ucmprod/groups/dragon/@web-enus/documents/webasset/nc_008811.pdf
http://www.nuance.com/ucmprod/groups/dragon/@web-enus/documents/webasset/nc_008811.pdf
http://cmusphinx.sourceforge.net/
http://www.amazon.com/gp/help/customer/display.html?nodeId=201602230
http://aws.amazon.com/ec2/
https://www.sparkfun.com/products/9151
https://www.sparkfun.com/products/8227
https://www.sparkfun.com/products/8635

11. Appendices

Brainstorming Diagrams:

