

Parallel Breadth-First Search Using OpenMP

HingOn Miu (hmiu) An Wu (anwu)

Carnegie Mellon University

Top-down Approach

Implementation Details

We use most of the same implementation detail as the sequential top­down solution

provided: two vertex_set (frontier and new_frontier). We parallelize the BFS by adding #pragma

omp parallel for, and made the frontier check atomic, using __sync_bool_compare_and_swap.

However, since we don’t even need to try to swap if the entry is visited before, we do a test

before calling __sync_bool_compare_and_swap to reduce synchronization. Also, if the swap is

successful, we use a __sync_add_and_fetch to atomically add the counter in the new frontier.

Also, we passed a few constants and pointers into top_down_step function like graph ­>

num_nodes and graph ­> outgoing_starts, so that the threads don’t need to access memory to

fetch them every time.

Optimization Process

First we implemented details above except doing the test before

__sync_bool_compare_and_ swap. The performance of our solution is not quite stable, and the

performance can go higher than 125% of reference solution sometimes. Then we went to office

hours and realized that synchronization could take a lot of costs, so we started to think about

what synchronization steps can be “eliminated”. After a while we came up with the idea that we

don’t really need to swap the entry in distance array if it’s already visited, and thus add a test

before calling the atomic function.

Performance analysis

- Where is the synchronization in your solution? Do you do anything to limit the

overhead of synchronization?
There are two places that synchronization happens: to (atomically) compare and swap in

the distance array, and to (atomically) add the counter in new_frontier. We did a test before

doing the compare and swap in order to reduce synchronization cost.

- Why do you think your code is unable to achieve perfect speedup?
The workload should be relatively balanced for top­down approach because frontiers are

evenly divided among all processors, and every frontier should contain the same amount of

work on average. However, there are considerable communication/synchronization in the top

down approach (two synchronization steps). There isn’t much artificial data movement in top

down step.

- When you run your code on Blacklight with more than 16 threads, do you see a

noticeable drop off in performance? Why do you think this might be the case?

We didn’t see a noticeable drop off in performance of top­down approach when the

thread counts go over 16 on Blacklight.

Bottom-up Approach

Implementation Details

We use two boolean arrays (frontier and new_frontier) to keep track of frontiers

and new frontiers. There is no synchronization in this approach. For every vertex, we can

check the distance array to see if it has been visited before, and if not, we can go through

all its incoming neighbors, and check frontier array to see if any neighbor was visited

before. If it is, then it must be a new frontier, so we set the respective entry in new_frontier

to true, and update this node’s distance. We used “guided” scheduling for the approach. In

definition, guided is pretty much like dynamic, but at the start of the program every thread

will be assigned more work than designated, and gradually every thread will be assigned

less and less work, with a minimum of the designated number. We think this approach will

decrease the scheduling overhead for large graphs. Also, we passed a few constants and

pointers into bottom_up_step function like graph­>num_nodes and graph­>

incoming_starts, so that the threads don’t need to access memory to fetch them every time.

Optimization Process

Reading the spec, we first realize that doing linear check to see if a vertex was visited

before, or if its incoming neighbors were visited before is probably going to be too slow. Thus,

the first solution we came up with is one that uses distances array to check both conditions in

O(1). Also there were no synchronizations in the solution, because every node only write to its

own entry in distances array. Surprisingly the solution was not fast enough. Confused, we went

to office hour. After the TA read several similar solutions that look alike, he concluded that

reading and writing one array for all threads may suffer from false sharing, and suggested us to

add more data structures to separate read and write. Thus we came up the approach to use

frontier (read­only in a round) and new_frontier (write­only in a round), and use boolean array

for both in order to increase the number of items that can be held in a cache line. After

implementing the optimization above, the performance of our bottom­up approach increased a

lot, but still can be unsatisfactory for rmat graphs. Thus, we made an extra optimization to pass

constants and pointers to bottom_up_step so that they don’t need to be dereferenced every time

to be used, and the performance of rmat graphs became better.

Performance analysis

- Where is the synchronization in your solution? Do you do anything to limit the

overhead of synchronization?

There is no explicit synchronization in the solution (no atomic function calls/critical

sections). However, cache coherence problem can happen sometimes, because many

professors can potentially read from and write to the same cache line. We use several

redundant arrays to separate read and write in order to reduce false sharing.

- Why do you think your code is unable to achieve perfect speedup?
The workload should be relatively balanced for in our approach, because we used

dynamic scheduling. However, there are some implicit synchronization/communication costs

(false sharing). These costs can also be attributed to data movement because when cache are

invalidated, data move from one cache to main memory/another cache.

- When you run your code on Blacklight with more than 16 threads, do you see a

noticeable drop off in performance? Why do you think this might be the case?

Yes we did. Since the main cost of bottom­up approach is from cache coherence,

adding the number of cores could hurt speedup.

Hybrid Approach

Implementation Details

The intuition for hybrid is that top­down is fast when there are few frontiers (because

it’s likely that there are not many new frontiers, so the bottom­up’s approach will waste time

traversing all vertices), and bottom­up is fast when there are many frontiers (because

top­down will have many new frontiers overlap, increasing synchronization overhead and

repeated checks).

We use the same structure and algorithm for hybrid as our parallel bottom­up and

top­down solution, except that we keep track of bottom­up’s frontier array when we are doing

top­down. Once we switch to bottom­up when there are many frontiers, we never switch back

again because switching between data structures are expensive. Our policy of switching is that

if the ratio of the number of frontiers to the total number of vertices is greater than 0.02, we do

the switching. This “magic number” is obtained by experiment.

Optimization Process

First our switching policy is that if the number of frontiers exceed a certain number, then

we do the switching. However, this solution is not scalable because graph size (and thus frontier

size) could differ greatly. Therefore, we changed our policy to ratio, and after several runs, we

decided that 0.02 is a good ratio, favoring large graphs.

Also, we keep track of both approaches’ data structures so we can switch back and

forth. However, this method proved to be too slow because keeping track of top­down

approach’s data structures requires synchronization. Then we tried converting one type of data

structure to the other when we are about to do the switching, and it still proved to be too

slow. Finally, we realized that when the frontier gets large, there shouldn’t be too many

iterations before the graph is completed processed, so it doesn’t hurt too much to keep using

bottom­up and never switch back. This approach proved to be sufficiently fast.

Performance analysis
- Where is the synchronization in your solution? Do you do anything to limit the

overhead of synchronization?
The only explicit synchronization is the synchronization for top­down approach in our

solution. We didn’t do any extra step compared to top­down approach. However, we decided not

to convert top­down’s data structure to that of bottom­up when we want to do the switching, but

instead keep track of it when we are doing top­down to reduce the synchronization step needed

to convert. Also we decide not to switch back to top­down approach after we take bottom­up

because either keeping track of top­down approach’s data structures or converting bottom­up

approach’s data structures to that of top­down could add synchronization costs.

- Why do you think your code is unable to achieve perfect speedup?

The workload should be balanced according to the analysis in the previous two

approaches. There are explicit synchronization costs in top­down approach, and there are

implicit cache communication costs in both approaches. Also, there are extra data movement

in top­down approach because it needs to keep track of bottom­up approach’s data structure.

- When you run your code on Blacklight with more than 16 threads, do you see a

noticeable drop off in performance? Why do you think this might be the case?

We saw some drop off in performance of hybrid approach when the thread counts go

over 16 on Blacklight, though it not as noticeable as the bottom­up approach. We think the

reason is that the drop off is counterbalanced by the top­down approach

Tables:

Runtime on ghc39.ghc.andrew.cmu.edu (rmat_32m.graph):

Runtime on ghc39.ghc.andrew.cmu.edu (random_50m.graph):

Runtime on Blacklight (rmat_32m.graph):

--
Max system threads = 1
Running with 1 threads
--
Loading graph...

Graph stats:
Edges: 199491925
Nodes: 33554432

Running with 1 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

1: 16.0188 11.6702 6.9809
--
Reference Summary
Threads Top Down Bottom Up Hybrid

1: 16.3109 14.0961 7.2650
--

--
Max system threads = 2
Running with 2 threads
--
Loading graph...

Graph stats:
Edges: 199491925
Nodes: 33554432

Running with 2 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

2: 15.8147 10.9551 4.4316
--
Reference Summary
Threads Top Down Bottom Up Hybrid

2: 15.7932 8.1047 4.8431
--

--
Max system threads = 4
Running with 4 threads
--
Loading graph...

Graph stats:
Edges: 199491925
Nodes: 33554432

Running with 4 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

4: 11.4126 8.6600 2.6278
--
Reference Summary
Threads Top Down Bottom Up Hybrid

4: 11.2683 4.0421 2.7536
--

--
Max system threads = 8
Running with8 threads
--
Loading graph...

Graph stats:
Edges: 199491925
Nodes: 33554432

Running with 8 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

8: 8.3346 7.5327 1.6313
--
Reference Summary
Threads Top Down Bottom Up Hybrid

8: 11.2405 2.1812 1.7437
--

--
Max system threads = 16
Running with 16 threads
--
Loading graph...

Graph stats:
Edges: 199491925
Nodes: 33554432

Running with 16 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

16: 10.6528 6.5767 1.9410
--
Reference Summary
Threads Top Down Bottom Up Hybrid

16: 11.3013 1.4047 1.5714
--

--
Max system threads = 32
Running with 32 threads
--
Loading graph...

Graph stats:
Edges: 199491925
Nodes: 33554432

Running with 32 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

32: 24.1170 21.5944 3.9215
--
Reference Summary
Threads Top Down Bottom Up Hybrid

32: 24.6346 4.6247 4.4369
--

Runtime on Blacklight (random_50m.graph):

--
Max system threads = 1
Running with 1 threads
--
Loading graph...

Graph stats:
Edges: 499999944
Nodes: 50000000

Running with 1 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

1: 46.3898 55.7806 11.2587
--
Reference Summary
Threads Top Down Bottom Up Hybrid

1: 44.9548 68.4181 15.2585
--

--
Max system threads = 2
Running with 2 threads
--
Loading graph...

Graph stats:
Edges: 499999944
Nodes: 50000000

Running with 2 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

2: 36.3385 35.1577 7.7612
--
Reference Summary
Threads Top Down Bottom Up Hybrid

2: 36.2882 36.0831 10.1436
--

--
Max system threads = 4
Running with 4 threads
--
Loading graph...

Graph stats:
Edges: 499999944
Nodes: 50000000

Running with 4 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

4: 21.6723 24.1341 4.8610
--
Reference Summary
Threads Top Down Bottom Up Hybrid

4: 21.5067 18.7704 5.6025
--

--
Max system threads = 8
Running with 8 threads
--
Loading graph...

Graph stats:
Edges: 499999944
Nodes: 50000000

Running with 8 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

8: 13.4517 15.6372 2.9507
--
Reference Summary
Threads Top Down Bottom Up Hybrid

8: 17.6449 10.1982 3.9919
--

--
Max system threads = 16
Running with 16 threads
--
Loading graph...

Graph stats:
Edges: 499999944
Nodes: 50000000

Running with 16 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

16: 19.3297 17.6897 4.1888
--
Reference Summary
Threads Top Down Bottom Up Hybrid

16: 20.6625 7.5523 3.8894
--

--
Max system threads = 32
Running with 32 threads
--
Loading graph...

Graph stats:
Edges: 499999944
Nodes: 50000000

Running with 32 threads
Testing Correctness of Top Down
Testing Correctness of Bottom Up
Testing Correctness of Hybrid
--
Timing Summary
Threads Top Down Bottom Up Hybrid

32: 46.4034 31.5984 10.0992
--
Reference Summary
Threads Top Down Bottom Up Hybrid

32: 56.1906 39.2686 13.8575
--

Runtime on unix.andrew.cmu.edu (random_50m.graph):

