

Parallel Sorting Using Message Passing Model

HingOn Miu (hmiu) An Wu (anwu)

Carnegie Mellon University

Steps of Optimization:

1. We have a discussion about whether the samples should be generated sequentially or in

parallel. If the samples are generated sequentially, all other processes would need to

send over their local data arrays to root process. If the samples are generated in parallel,

then all other processes have to send over their local sample arrays to root process. Since

a local data array is much larger than a local sample array when the data size is large, the

communication cost of the sequential method is obviously bigger than the parallel

method. Moreover, the sequential method puts more workload on the root process and so

it makes the other processes hang (waiting to receive pivots) for a longer time than the

parallel method. Hence, the sequential method has lower resource utilization than the

parallel method. So, we decide that the samples should be generated in parallel.

2. We tried to use for loops to receive and send data across processes. However, these

receive and send are blocking calls and so these sequential for loops are slow. Therefore,

we decide to use gather and broadcast to pass local samples and pivots across processes,

and it is proven to be much faster.

3. After bucketing the local data, each process should send each bucketed data to each

responsible process. We tried the naive solution that uses a for loop and sends bucketed

data to each process sequentially. Expectedly, this method ran pretty slow. Then, we

decide to use alltoall and alltoallv instead of the sequential send and receive method.

First, each process uses alltoall to inform all other processes how many data it is going to

send to them. Next, since each process knows how many data all other processes is going

to send to it, each process uses alltoallv to receive data from all other processes. This

smarter method turns out to run much faster.

4. Our sorting function ran well on smaller data set (eg. 1M), but it got a segmentation

fault when it ran on bigger data set (eg. 100M). We later figured out that the system ran

out of memory because of the large static 2D array declared locally. This 2D static array

was used to bucket the data to prepare to send to each processes. For a large data size N,

each process need to declare a static 2D array of size N * P. If there are 100 processors

and 1 billion floats to sort, then each process would require 1 billion * 100 *

sizeof(float) = 400 billions bytes. This is very memory inefficient. Hence, we decide to

use an array of std::vector’s instead to save memory space, and so each process would

only require to allocate memory for N / P floats on average for bucketing the local data.

5. Finally, we conclude that it makes no sense to go through all the processes

communication codes when there is only 1 processor in the whole system because they

essentially make no changes. So, we add a simple if­statement at the top such that our

function simply sorts the data array when the processor count is 1.

Questions:

A. In the 1 million element array case, speedup for large P may be quite poor.

Please describe why the shape of the speedup graph looks the way it does.

For a large P like 64, each process averagely gets 1,000,000 / 64 ≈ 15600 local elements.

For a larger P like 128, each process averagely gets 1,000,000 / 128 ≈ 7800 local

elements. We observe that our sorting function takes more time on P = 128 than P = 64,

and the only noticeable difference between them is the average number of local input

elements. Therefore, we know the decrease of local input elements results in the increase

in runtime for large P. An explanation for this behavior is that the increased

communication cost among processors is more significant than the reduced cost in sorting

the local data array, which puts a limit on increasing processors/decreasing local problem

size.

B. What are reasons why speedup is not perfect for large P even when the array size is large. Is

it workload imbalance? Is it communication costs? Make measurements of your program

(time spent in each phase, time spent communicating, waiting for a barrier etc.) that allow

you to support your answer with real data. (Much like we did in Assignment 1)

Timing of N = 1B and P = 64:

Timing of N = 1B and P = 128:

Communication cost:

When the number of processors goes from 64 to 128, there is a huge increase (3.61754 /

0.78756 ≈ 4.6 times) in average time spent of passing the bucketed data around all

processors through Alltoallv. So, the communication cost increases significantly.

Workload imbalance:

When P = 64, the minimum runtime of local data sort is (4.87805 ­ 4.21774) / 4.87805 ≈

13% lower than the average, while the maximum runtime of local data sort is (5.30396 ­

4.87805) / 4.87805 ≈ 8% higher than the average. When P = 128, the minimum runtime of

local data sort is (1.24223 ­ 0.83506) / 1.24223 ≈ 33% lower than the average, while the

maximum runtime of local data sort is (1.66555 ­ 1.24223) / 1.24223 ≈ 35% higher than the

average. Obviously, the workload imbalance becomes more significant.

Tables & Graphs:

Runtime on Blacklight:

Problem
 # of Processors

2 4 8 16 32 64 128 Size

1 M 0.0681s 0.0395s 0.0211s 0.0107s 0.0063s 0.0083s 0.0132s

100 M 9.1643s 4.6769s 2.3573s 1.1814s 0.7264s 0.5252s 1.6537s

1 B 90.9310s 49.5621s 25.5713s 13.6720s 7.3395s 5.2544s 6.3210s

