
Matrix Factorization with Spark

HingOn Miu

hmiu@andrew.cmu.edu

Carnegie Mellon University

1. Introduction

This project uses Spark to parallelize an

iterative machine learning algorithm – matrix

factorization. Spark is very fast as it is designed to store

all intermediate data in memory for later stages of

computation. It is often programmers’ responsibility to

design a parallel Spark algorithm that minimizes

network I/O and utilizes all resources to their fullest

potentials. Therefore, I have one vital parallelization

goal in this project: maximize computation time and

minimize network I/O latency for each executor core.

Parallelization gets noticeably harder when

dealing with larger datasets since there is often harsher

constraints on resources. Now, let’s start discussing the

possible parallelization of each code segment in matrix

factorization.

2. Parallelization of Code Segments

2.1. blockify_data

In the iterative version, blockify_data looks for

the maximum userid and movieid sequentially (one core

does all the work), while my code first reads the dataset

into #-of-cores partitions and computes the maximum

with Spark max. As evident by Spark Event Timeline,

all cores in my code participate in computing maximum

in local partitions and merge the result. Also, I notice

that the ratings dataset is read-only throughout the entire

matrix factorization computation, and the dataset is read

frequently to factorize W rows and H rows. So, I believe

that Spark broadcast variable is more efficient than

RDD in this scenario since the entire ratings dataset

broadcast sits in memory of each executor node instead

of only a subset of the dataset (local partitions).

Therefore, the entire ratings dataset is only needed to be

transferred once in the network, and this eliminates

network I/O of shuffling partitions of the ratings dataset

in each factorization computation if RDD were used to

store the ratings dataset.

I experimented my theory on 1M ratings

dataset and observed at least 2x speedup. I used lookup

to fetch each block of the dataset matrix, and each RDD

lookup requires huge network I/O of broadcasting the

lookup result. On the other hand, there is no network I/O

observed at all for using broadcast variable to store the

dataset during the entire iteration of matrix factorization.

2.2. initialize_factor_matrices

With the same reasoning of minimizing

network I/O in shuffling partitions, I decide to make two

copies each of W rows and H rows such that one copy is

RDD for computation and one copy is broadcast variable

for quick lookups. Hence, the two copies are cached in

memory before each iteration and unpersisted at the end

of each iteration of matrix factorization. I again

experimented my theory on 1M ratings dataset and

observed at least 2x speedup. I used lookup to fetch each

block of the W/H rows, and each RDD lookup requires

huge network I/O of broadcasting the lookup result. On

the other hand, there is no network I/O observed at all

for using broadcast variable to store the W/H rows

during the entire iteration of matrix factorization.

However, there is a huge burst of network I/O at the end

of the iteration when the new broadcast variables of W

rows and H rows are generated.

2.3. sgd_block_by_block

In the iterative version, each block in matrix is

traversed sequentially, and this is obviously a waste of

resources because only the executors that hold the

corresponding blocks of W rows and H rows are doing

the computation. As evident by Spark Event Timeline,

all other executors remain in idle.

To fix this issue, I decide to parallelize the

matrix traversal. I notice that sgd_on_one_block updates

the corresponding blocks of W rows and H rows at the

same time. This greatly limits the potential parallelism

because if my code were to factorize an entire row of

blocks in the matrix, my code would have to somehow

atomically update the single block of W rows to avoid

race condition. Therefore, I eventually split

sgd_on_one_block into two functions: one function

updates the block of W rows and one function updates

the block of H rows. Then, my code computes the matrix

row by row and updates an entire row of blocks of H

rows in parallel, then my code computes the matrix

column by column and updates an entire column of

blocks of W rows in parallel. Since there are #-of-cores

partitions each in W rows and H rows, Spark Event

Timeline indeed shows that there is no idle core during

matrix traversal. As mentioned in previous section, since

I have a copy of W rows, H rows and dataset as

broadcast variables, I manage to eliminate the network

I/O of throughout the entire matrix traversal.

2.4. evaluate_block_by_block

Similar to sgd_block_by_block, the iterative

version traverses each block in the matrix sequentially.

Moreover, I notice that there is no update to any block of

W rows and H rows. So, my code simply gets the

Cartesian product of W rows and H rows, and joins with

the rating dataset such that compute all blocks in the

matrix can be computed in parallel. I experimented my

theory on 1M ratings dataset and observed at least 2x

speedup. Similar to sgd_block_by_block, I observe no

network I/O at all from Spark History Server. There is

also no new broadcast variable creation, and so the

entire function runs locally in each executor core.

2.5. saveAsTextFile

It is required that the ultimate outputs of W

rows and H rows are stored in separate single HDFS

files, my code has to sort them in correct order and

group the blocks into one single partition. I attempted to

use sortByKey to generate one single partition with

sorted blocks, but I noticed from Spark History Server

that there is many network I/O involved in sorting the

partitions globally. Therefore, I avoided sorting by using

partition index. Since the default ordering of partitions in

each RDD accords to their partition index, I created the

RDDs of W rows and H rows with sorted blocks

mapped to partition index. Without sortByKey, I use

coalesce to generate one single partition in the end, and I

notice there is much less network I/O compared to

sortByKey on 1M ratings dataset from Spark History

Server.

3. Scalability

3.1. num_partitions

As mentioned above, the number of partitions

is set to be the number of logical cores of all executor

cores, and so each executor core can work independently

on its local partitions. So, my code has a global variable

num_partitions that controls the partitioning of all

RDDs, and my code can adapt to any number of

executor cores by updating num_partitions.

3.2. Memory

As the executor instance type changes, my code

sets spark.driver.memory, spark.executor.mem-ory, and

spark.python.worker.memory to replace the default

configuration to fully utilize all resources. My code also

sets spark.akka.frameSize such that the maximum

memory each task uses can be adjusted according to the

input rating datasets and number of partitions.

3.3. Network

To further reduce network I/O, I increase the

value of spark.network.timeout and spark.akka.heart-

beat.interval so that there is less flood of heartbeat

messages in the network.

4. Conclusion

In other words, I have managed to minimize

network I/O as little as possible such that each executor

core can work on is local partitions most of the time. For

next steps, I would want to study more of the Spark

configuration since there are so many parameters to

tune. Also, I would love to try to run my code on

different instance types and cluster sizes to determine the

best cluster configuration of computing matrix

factorization with minimum amount of resources.

As shown in Spark History Server, there are

only three bottlenecks in my program that incur huge

network I/O. The first bottleneck is when generating the

broadcast variable of the ratings dataset, and it is proved

that this is a good tradeoff since it greatly reduces the

network I/O of ratings lookup in later stages. The second

bottleneck is when generating new broadcast variable

for W rows and H rows after each iteration of matrix

factorization. Again, with the same reasoning, this is a

good tradeoff since it greatly reduces the network I/O of

W/H rows lookup in later stages. The last bottleneck is

the coalescing all partitions into one single partition to

output W rows and H rows into HDFS files. Ideally,

since my code already has the broadcast variables of the

final version of W rows and H rows in the end, they

already sit in memory of every executor node and I

should be able to easily store them into a single HDFS

file. However, after some extensive research, there is no

easy way to do that without using other libraries. I

believe I may still overlook some shortcuts that can

write an in-memory string into a single HDFS file such

that I can eliminate the network I/O completely in

coalesce.

