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1. Introduction 

This project uses Spark to parallelize an 

iterative machine learning algorithm – matrix 

factorization. Spark is very fast as it is designed to store 

all intermediate data in memory for later stages of 

computation. It is often programmers’ responsibility to 

design a parallel Spark algorithm that minimizes 

network I/O and utilizes all resources to their fullest 

potentials. Therefore, I have one vital parallelization 

goal in this project: maximize computation time and 

minimize network I/O latency for each executor core.  

Parallelization gets noticeably harder when 

dealing with larger datasets since there is often harsher 

constraints on resources. Now, let’s start discussing the 

possible parallelization of each code segment in matrix 

factorization.  

 

2. Parallelization of Code Segments 

2.1. blockify_data 

In the iterative version, blockify_data looks for 

the maximum userid and movieid sequentially (one core 

does all the work), while my code first reads the dataset 

into #-of-cores partitions and computes the maximum 

with Spark max. As evident by Spark Event Timeline, 

all cores in my code participate in computing maximum 

in local partitions and merge the result. Also, I notice 

that the ratings dataset is read-only throughout the entire 

matrix factorization computation, and the dataset is read 

frequently to factorize W rows and H rows. So, I believe 

that Spark broadcast variable is more efficient than 

RDD in this scenario since the entire ratings dataset 

broadcast sits in memory of each executor node instead 

of only a subset of the dataset (local partitions). 

Therefore, the entire ratings dataset is only needed to be 

transferred once in the network, and this eliminates 

network I/O of shuffling partitions of the ratings dataset 

in each factorization computation if RDD were used to 

store the ratings dataset. 

I experimented my theory on 1M ratings 

dataset and observed at least 2x speedup. I used lookup 

to fetch each block of the dataset matrix, and each RDD 

lookup requires huge network I/O of broadcasting the 

lookup result. On the other hand, there is no network I/O 

observed at all for using broadcast variable to store the 

dataset during the entire iteration of matrix factorization. 

 

2.2. initialize_factor_matrices 

With the same reasoning of minimizing 

network I/O in shuffling partitions, I decide to make two 

copies each of W rows and H rows such that one copy is 

RDD for computation and one copy is broadcast variable 

for quick lookups. Hence, the two copies are cached in 

memory before each iteration and unpersisted at the end 

of each iteration of matrix factorization. I again 

experimented my theory on 1M ratings dataset and 

observed at least 2x speedup. I used lookup to fetch each 

block of the W/H rows, and each RDD lookup requires 

huge network I/O of broadcasting the lookup result. On 

the other hand, there is no network I/O observed at all 

for using broadcast variable to store the W/H rows 

during the entire iteration of matrix factorization. 

However, there is a huge burst of network I/O at the end 

of the iteration when the new broadcast variables of W 

rows and H rows are generated. 

 

2.3. sgd_block_by_block 

In the iterative version, each block in matrix is 

traversed sequentially, and this is obviously a waste of 

resources because only the executors that hold the 

corresponding blocks of W rows and H rows are doing 

the computation. As evident by Spark Event Timeline, 

all other executors remain in idle. 

To fix this issue, I decide to parallelize the 

matrix traversal. I notice that sgd_on_one_block updates 

the corresponding blocks of W rows and H rows at the 

same time. This greatly limits the potential parallelism 

because if my code were to factorize an entire row of 

blocks in the matrix, my code would have to somehow 

atomically update the single block of W rows to avoid 

race condition. Therefore, I eventually split 

sgd_on_one_block into two functions: one function 

updates the block of W rows and one function updates 

the block of H rows. Then, my code computes the matrix 

row by row and updates an entire row of blocks of H 

rows in parallel, then my code computes the matrix 

column by column and updates an entire column of 



blocks of W rows in parallel. Since there are #-of-cores 

partitions each in W rows and H rows, Spark Event 

Timeline indeed shows that there is no idle core during 

matrix traversal. As mentioned in previous section, since 

I have a copy of W rows, H rows and dataset as 

broadcast variables, I manage to eliminate the network 

I/O of throughout the entire matrix traversal. 

 

2.4. evaluate_block_by_block 

Similar to sgd_block_by_block, the iterative 

version traverses each block in the matrix sequentially. 

Moreover, I notice that there is no update to any block of 

W rows and H rows. So, my code simply gets the 

Cartesian product of W rows and H rows, and joins with 

the rating dataset such that compute all blocks in the 

matrix can be computed in parallel. I experimented my 

theory on 1M ratings dataset and observed at least 2x 

speedup. Similar to sgd_block_by_block, I observe no 

network I/O at all from Spark History Server. There is 

also no new broadcast variable creation, and so the 

entire function runs locally in each executor core. 

 

2.5. saveAsTextFile 

It is required that the ultimate outputs of W 

rows and H rows are stored in separate single HDFS 

files, my code has to sort them in correct order and 

group the blocks into one single partition. I attempted to 

use sortByKey to generate one single partition with 

sorted blocks, but I noticed from Spark History Server 

that there is many network I/O involved in sorting the 

partitions globally. Therefore, I avoided sorting by using 

partition index. Since the default ordering of partitions in 

each RDD accords to their partition index, I created the 

RDDs of W rows and H rows with sorted blocks 

mapped to partition index. Without sortByKey, I use 

coalesce to generate one single partition in the end, and I 

notice there is much less network I/O compared to 

sortByKey on 1M ratings dataset from Spark History 

Server. 

 

3. Scalability 

3.1. num_partitions 

As mentioned above, the number of partitions 

is set to be the number of logical cores of all executor 

cores, and so each executor core can work independently 

on its local partitions. So, my code has a global variable 

num_partitions that controls the partitioning of all 

RDDs, and my code can adapt to any number of 

executor cores by updating num_partitions. 

3.2. Memory 

As the executor instance type changes, my code 

sets spark.driver.memory, spark.executor.mem-ory, and 

spark.python.worker.memory to replace the default 

configuration to fully utilize all resources. My code also 

sets spark.akka.frameSize such that the maximum 

memory each task uses can be adjusted according to the 

input rating datasets and number of partitions. 

 

3.3. Network 

To further reduce network I/O, I increase the 

value of spark.network.timeout and spark.akka.heart-

beat.interval so that there is less flood of heartbeat 

messages in the network.  

 

4. Conclusion 

In other words, I have managed to minimize 

network I/O as little as possible such that each executor 

core can work on is local partitions most of the time. For 

next steps, I would want to study more of the Spark 

configuration since there are so many parameters to 

tune. Also, I would love to try to run my code on 

different instance types and cluster sizes to determine the 

best cluster configuration of computing matrix 

factorization with minimum amount of resources. 

 

As shown in Spark History Server, there are 

only three bottlenecks in my program that incur huge 

network I/O. The first bottleneck is when generating the 

broadcast variable of the ratings dataset, and it is proved 

that this is a good tradeoff since it greatly reduces the 

network I/O of ratings lookup in later stages. The second 

bottleneck is when generating new broadcast variable 

for W rows and H rows after each iteration of matrix 

factorization. Again, with the same reasoning, this is a 

good tradeoff since it greatly reduces the network I/O of 

W/H rows lookup in later stages. The last bottleneck is 

the coalescing all partitions into one single partition to 

output W rows and H rows into HDFS files. Ideally, 

since my code already has the broadcast variables of the 

final version of W rows and H rows in the end, they 

already sit in memory of every executor node and I 

should be able to easily store them into a single HDFS 

file. However, after some extensive research, there is no 

easy way to do that without using other libraries. I 

believe I may still overlook some shortcuts that can 

write an in-memory string into a single HDFS file such 

that I can eliminate the network I/O completely in 

coalesce. 


