

GPU Ray Tracer with

Optimized Parallel BVHs

An Wu (anwu) HingOn Miu (hmiu)
Carnegie Mellon University

Table of Contents

1. Summary
2. Background

2.1 Overview

2.2 Data Structures & Operations
2.2.1 Radix Tree
2.2.2 Bounding Volume Hierarchy (BVH) Tree

2.3 Algorithms Inputs & Outputs
2.3.1 Radix Tree Construction
2.3.2 BVH Tree Construction
2.3.3 BVH Tree Optimization

2.4 Computations That Can Benefit From Parallelization
2.4.1 Ray Tracing using Global Illumination
2.4.2 Accelerating Structure Construction
2.4.3 Accelerating Structure Optimization

2.5 Preliminary Analysis
2.5.1 Inter-structure
2.5.2 Radix Tree Construction
2.5.3 BVH Tree Construction
2.5.4 BVH Tree Optimization Dependencies

3. Approach
3.1 Radix Tree Construction
3.2 BVH tree Construction
3.3 BVH Optimization

3.3.1 Treelet Rotation
3.3.2 Dynamic Programming

4. Results
5. Reference
6. Work Distribution

1. Summary

We implemented a state­of­the­art GPU ray tracer with optimized parallel

bounding volume hierarchies in CUDA. First, We built a parallel GPU ray tracer in

CUDA. Then, we constructed parallel bounding volume hierarchies on GPU

according to Tero Karras’s Maximizing Parallelism in the Construction of BVHs,

Octrees, and k­d Trees. Finally, we optimized the bounding volume hierarchies

according to Tero Karras’s and Timo Aila’s Fast Parallel Construction of High­Quality

Bounding Volume Hierarchies. Our CUDA implementation runs on NVIDIA's GRID

K520 through Amazon Web Services.

2. Background

2.1 Overview

Ray tracing generates the colors of an image by tracing the path of the light rays

for each pixel in an image. The light ray simulates realistic physical encounter with the

objects along the path, including reflection and refraction. Hence, it is essential to

compute the closest object that intersects with the light ray. So, the runtime of ray

tracing effectively lies on the time spent on finding the closest intersected object among

all geometries. Many researches are conducted aiming to find the most efficient data

structure that reduces the geometries traversal time.

We parallelized construction of BVHs to accelerate ray tracing on GPU.

Specifically, we took the CPU ray tracing code from smallpt that uses global

illumination, and first parallelized it (per­pixel parallelism) to run on GPU. Then, we

used the BVHs construction algorithm by Tero Karras, and BVHs optimization

algorithm described by Tero Karras and Timo Aila to build the BVH used to

accelerate ray tracing.

http://dl.acm.org/citation.cfm?id=2383801
http://dl.acm.org/citation.cfm?id=2383801
https://research.nvidia.com/publication/fast-parallel-construction-high-quality-bounding-volume-hierarchies
https://research.nvidia.com/publication/fast-parallel-construction-high-quality-bounding-volume-hierarchies
https://research.nvidia.com/publication/fast-parallel-construction-high-quality-bounding-volume-hierarchies
http://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29
http://www.kevinbeason.com/smallpt/

2.2 Data Structures & Operations

2.2.1 Radix Tree

The BVH tree construction involves 2 steps. The first is to construct a radix

tree. It comes in the following form (Karras 2012):

Figure 1: Ordered binary radix tree. Leaf nodes, numbered 0–7,
store a set of 5-bit keys in lexicographical order, and the internal nodes

represent their common prefixes. Each internal node

covers a linear range of keys, which it partitions into two

subranges according to their first differing bit.

The radix tree is as a balanced compact tree (every internal node has exactly

two leaves) with a fixed number of leaves. We choose to construct a radix tree

before the BVH tree because we can achieve per-node parallelism when constructing

the radix tree. With a constructed radix tree, we can construct BVH in a bottom-up

manner which we will explain in detail in section 2.3.

http://en.wikipedia.org/wiki/Radix_tree
http://en.wikipedia.org/wiki/Radix_tree

2.2.2 Bounding Volume Hierarchy (BVH) Tree

The second step is the actual BVH tree construction. The tree construction

begins from bounding boxes of geometries in tree leaves, and then it merges the

bounds going up to the root.

Figure 2:Abunny represented in a BVH Tree.
Image credit

Instead of traversing all geometries to test for intersection during ray

tracing, we only need to visit a BVH tree node if the ray intersects its bounding

box. This effectively decreases the runtime cost to O(log(n)) in a graph whose

geometries are evenly distributed.

http://en.wikipedia.org/wiki/Bounding_volume_hierarchy
http://thomasdiewald.com/blog/?p=1488

2.3 Algorithms Inputs & Outputs

2.3.1 Radix Tree Construction

Inputs: Number of leaves
Outputs: A balanced radix tree that contains exactly specified number of leaves

2.3.2 BVH Tree Construction

Inputs: The constructed radix tree in section 2.3.1; a sorted list of geometries
in the scene (see section 3.2 for sorting details)

Outputs: A BVH tree which has the same structure as the radix tree, and has its
leaves being the geometries in order. All the tree nodes have merged
bounding boxes from their children.

2.3.3 BVH Tree Optimization
Inputs: The BVH tree from section 2.3.2.
Outputs: An optimized BVH tree that’s close to the golden standard of ray tracing.

2.4 Computations That Can Benefit From Parallelization

2.4.1 Ray Tracing using Global Illumination

The ray tracing in smallpt is implemented using global illumination. The ray

tracing logic is enclosed in a per­pixel for loop. Due to the non­linear computation

needed in ray intersection test as well as the multiple samplings needed to refine the

image, the algorithm has high runtime cost. Ray tracing would benefit from simple

per­pixel parallelization.

2.4.2 Accelerating Structure Construction

The ray tracing acceleration data structure (in our case, a BVH tree)

construction wouldn’t cost much, because most acceleration data structures

construction time scale linearly regard to number of geometries. However, it could still

benefit from parallelization because of its tree form.

2.4.3 Accelerating Structure Optimization

Depending on the optimization methods and the requirement of acceleration data

structure quality, optimization could cost variably. In our case, optimization has linear

cost with regard to geometry size (though with a relatively large constant multiplier).

This could still benefit from parallelization because the optimization traverses the tree

bottom­up, one level at a time.

http://www.kevinbeason.com/smallpt/

2.5 Preliminary Analysis

2.5.1 Inter-structure

All data structures depend on the previous ones to be built: Optimized BVH Tree

­> BVH Tree ­> Radix Tree. This process cannot be parallelized.

2.5.2 Radix Tree Construction

The radix tree nodes are all independent of each other, so they can be

per­node parallelized (see section 3.1 for details). It’s fully data­parallel (high SIMD

utilization), and locality is high because the tree nodes are kept in an array, and

CUDA threads take nodes in order.

2.5.3 BVH Tree Construction

The BVH tree construction has dependency vertically. The levels on the top

requires the levels beneath them to be built. Thus, we get a lot of parallelism at the

bottom of the tree, and get less and less parallelism as we go up (same for data

parallelism). However, at each level the locality is good, because nodes on the same

level stay together in the memory. SIMD is not that good because at each level, we

lose half of the CUDA threads.

2.5.4 BVH Tree Optimization Dependencies
The BVH Tree optimization process has the same structure of dependencies as

the BVH Tree construction process on the high level, and thus the analysis of data

parallelism, locality, and SIMD execution is very much alike.

However, the optimization dependency for individual treelet is different. With

dynamic programming(see section 3.3.2 for details), the execution path is

pre­determined, and thus we can get very high SIMD utilization. For every treelet, we

frequently access 128 bytes of memory to find the optimal partition, and so the memory

locality is high. However, when restructuring the treelet, nodes on different levels of the

tree are accessed, which decreases data locality.

3. Approach

3.1 Radix Tree Construction

We can construct a balanced radix tree with any number of leaf nodes in a

per-node parallel manner on GPU (as opposed to the usual bottom-up approach

which slows down at the top parts of the tree). The approach can be demonstrated

in the following graph (Karras 2012):

Figure 3:Our node layout for the tree of Figure 1. Each internal

node has been assigned an index between 0–6, and aligned

horizontally with a leaf node of the same index. The range of keys
covered by each node is indicated by a horizontal bar, and

the split position, corresponding to the first bit that differs

between the keys, is indicated by a red circle.

Given the index i of a radix tree node (the number in the orange circles),

we can find its sibling by comparing the length of common prefixes of (i, i+1) and

(i, i-1) and take the smaller one. Given the length of common prefix, we can

calculate the other end of the current segment by doing binary search (until the

length of common prefix decreases). When this is done, we can link the current

node to its children by calculating the split position of the current node.

3.2 BVH tree Construction

Given the constructed radix tree, we can populate the BVH tree in a bottom­up

manner. We basically create a CUDA thread for each leaf. When going up from leaf to

root, the first­to­come thread would terminate, and the second­to­come thread will

merge bounds at the node and keep going up to root. In this manner, we can ensure

that both children of a node are processed when the node is going to be processed.

Since each node is processed by exactly one CUDA thread, the time complexity is O(n).

To improve the quality of the BVH tree, we adopt the Morton code method

described in the Karras 2012 paper. Basically, we give a geometry a 60­bit morton code

(put in a 64­bit long) that takes the form of X0Y0Z0X1Y1Z1…, where X0X1X2… is its

centroid’s x­coordinate, and Y0Y1Y2... is its centroid’s y­coordinate, and Z0Z1Z2… is

its centroid’s z­coordinate. Then, we sort the geometries according to their Morton

codes, and assign them to the leaves from left to right. In this way, closely positioned

geometries are put together.

3.3 BVH Optimization

3.3.1 Treelet Rotation

Even though linear BVH construction described in section 2.3.1 and 2.3.2 is fast,

their ray tracing performance tends to be unaccepted slow ­­­ usually around 50% of

the gold standard (Karras & Aila, 2013). Thus, we adopted the treelet reconstruction

method described by Karras and Aila to improve the linear BVH tree to one that is close

to the gold standard in ray tracing performance.

A treelet is defined as the collection of immediate descendants of a given treelet

root, consisting of n treelet leaves and n­1 treelet internal nodes. Given a treelet root,

we populate the entire treelet by recursively adding children of the node that has the

greatest Surface Area Heuristic (SAH) cost. The SAH cost of a given acceleration

structure is defined as the expected cost of tracing a non­terminating random ray

through the scene. With a treelet, we can perform reconstruction on it to achieve the

best SAH cost for any treelet node. We choose treelets of size 7 in our implementation,

because individual treelets provide us more than ten thousands of ways of

reconstruction (Karras & Aila, 2013).

To summarize, we start from the leaves of the tree, form treelets while we go up,

and rotate them to optimize the BVH’s performance.

Figure 4:Left:Treelet consisting of 7 leaves (A–G) and 6
internal nodes, including the root (R). The leaves can either

be actual leaf nodes of the BVH (A, B, C, F), or they can
represent arbitrary subtrees (D, E, G). Right:Reorganized

treelet topology to minimize the
overall SAH cost. Descendants of the treelet leaves are kept intact,

but their location in the tree is allowed to change.

3.3.2 Dynamic Programming

We acquire the best treelet rotation by recursively finding the best partition of

left and right children of a node, until the partition size becomes one. Though this

algorithm seems simple, it involves a lot of recursive calls and repeated work. Thus,

we adopt Karras and Aila’s dynamic programming approach to memoize the best

results of the small partitions and use them to build larger and larger partitions. This

way, we effectively transform from a naive algorithm that makes 1.15 million

(Karras & Aila, 2013) recursive calls to a single iterative function that has time

complexity of O(n). Also, we use char bitmasks to indicate which treelet leaves are in

the partition, since the size of the treelet is 7 (less than 8 bits, the size of 1 char).

4. Results

Graph 1:Runtime comparison between a CPU ray tracer and a GPU ray tracer

Constant The sample scene contains 9 spheres

Dependent Variable The runtime of ray tracing measured in unit of seconds

Independent Variable # of samples per pixel = # of ray tracing execution per pixel

Configuration of blue line Ray tracing is parallelized with OpenMP on CPU

Configuration of red line Ray tracing is parallelized with CUDA threads on GPU

Problem We choose to vary the number of samples per pixel because it defines the
Size number of times of ray tracing computation. Naturally, we want to see the
Analysis difference in time spent on ray tracing on CPU and GPU.

Runtime This is a good runtime comparison of parallelism between CPU and GPU
Analysis because the exact same piece of code are parallelized over CPU and GPU. The

 intersection tests of both implementation traverse all geometries sequentially,
 and so we can actually evaluate how the same piece of code is executed in
 different settings.

 Obviously, GPU implementation much faster. Notice that smaller samples per
 pixel have approximately 28 seconds GPU runtime, and so we speculate that
 this should be the overhead for launching CUDA threads.

Since the geometries are traversed in for-loop in both implementation, there
is memory locality for accessing subsequent closely stored geometries. Since
both GPU and CPU implementations traverse all geometries sequentially,
each geometry is fetched from memory to run intersection test. Since the
size of the cache in CPU and GPU is limited and the memory bandwidth is
finite, the runtime of finding the closest interested object lies on how fast to
fetch each geometry from memory. Hence, we speculate that ray tracing is a
bandwidth bound algorithm.

For our CUDA implementation, it runs on a GPU with 16-wide SIMD. So,
while each ray is parallelized, a set of 16 rays are computed concurrently.
Since each ray can get absorbed, reflected, or refracted, a current ray can
terminate, generate a new ray, or generate two new rays respectively.
Therefore, we speculate the SIMD utilization is quite poor due to
divergence since some lane in SIMD computing an absorbed ray must
remain idle while some other lane computing multiple refracted rays.

Graph 2: Runtime comparison of GPU ray tracer with and without BVHs

Constant 4 samples per pixel = 4 execution of ray tracing per pixel

Dependent Variable The runtime of ray tracing measured in unit of seconds

Independent Variable The number of spheres in scene

Configuration of Purple line Ray tracing is parallelized with CUDA threads on GPU. The
 geometries in scene are traversed sequentially in each
 intersection test.

Configuration of Grey line Ray tracing is parallelized with CUDA threads on GPU. The
 geometries in scene are stored in BVHs, and the tree is
 traversed in each intersection test.

Problem We choose to vary the number of spheres in scene because it defines the
Size number of geometries to traverse in intersection test. Naturally, we want to
Analysis see if the use of BVHs reduces the time spent on traversal.

Runtime The actual ray bouncing computation is inherently sequentially, since there
Analysis is no way to compute the next ray before the current ray intersects an

 object. Therefore, this ray bouncing computation is the limiting factor in
 parallelizing ray tracing in both CPU and GPU. Hence, it is essential to
 compute intersected object for each ray efficiently. Obviously, without
 BVHs, the runtime of finding the closest intersected object is O(n), since all
 geometries have to be traversed. Then, the best case with BVHs in runtime
 is O(log n), since exactly one branch of the tree is traversed so that the
 number of geometries accessed is bounded by the depth of the tree.
 However, the worst case with BVHs in runtime is still O(n), since both

branches of each node are traversed so that all geometries are
accessed anyways.

Naturally, we require GPU to provide extra memory to store the BVHs.
Therefore, this can potentially increase the runtime of ray tracing
because the algorithm is bandwidth bounded. The memory access
patterns of the sequential traversal and BVHs traversal of geometries are
vastly different. The sequential traversal always access the geometries in
some sort of fixed meaningless pattern. So, this exploits memory spatial
locality because contiguously stored geometries are accessed. However,
the BVHs traversal access the geometries in a spatial pattern. In other
words, geometries that clustered in the same region are more likely to
get accessed together. Hence, this exploits memory temporal locality
because rays that shoot in similar directions are highly likely to access
the same set of geometries in the BVHs. Therefore, we attempt to
optimize the BVHs to further reduce the unnecessary memory accesses.

Graph 2.5: Correlation analysis of runtime of BVHs construction and # of spheres

Dependent Variable The time of BVHs construction measured in unit of seconds

Independent Variable The number of spheres in scene

Configuration of Blue line A radix tree is constructed parallelly on GPU, and then the

 geometries are inserted parallelly on GPU to construct BVHs.

Problem We choose to vary the number of spheres in scene because it defines the
Size number of geometries to insert in BVHs construction. Naturally, we want to see
Analysis if increase in geometries affects BVHs construction time.

Runtime The BVH construction is composed of 2 parts: the radix tree construction, and
Analysis the BVH tree construction. Since radix tree construction is done using per-node

 parallelism, it costs us little time compared to BVH tree construction, which

 uses a per-level parallelism. The total runtime is still linear with regard to

 number of geometries, because ultimately the number of threads will be much

 larger than the number of CUDA threads that can be run together. The radix

 tree construction has high SIMD utilization, because the same operations are

 done on each node in a data parallel fashion. The only conditional branch is at

 the end of the function, which is used to decide whether the child is another

 internal node or a leaf. It also has high data locality because consecutive

 indexed nodes are usually placed at the same level. Thus, CUDA threads in a

 warp usually access the same chunk of memory.

 The BVHs construction has relatively low SIMD utilization, because half of the

 CUDA threads terminate in each level of BVHs. The data locality is poor since

 the geometries are sorted, and so the memory access pattern is random in

 memory. When the CUDA threads process internal nodes, data locality rises

 because consecutively indexed nodes are placed in same level of BVHs.

Graph 3: Runtime comparison of GPU ray tracer with BVHs and with optimized BVHs

Constant 4 samples per pixel = 4 execution of ray tracing per pixel

Dependent Variable The runtime of ray tracing measured in unit of seconds

Independent Variable The number of spheres in scene

Configuration of Blue line Ray tracing is parallelized with CUDA threads on GPU. The
 geometries in scene are stored in BVHs, and the tree is
 traversed in each intersection test.

Configuration of Red line Ray tracing is parallelized with CUDA threads on GPU. The
 geometries in scene are stored in BVHs, and then the tree
 is optimized before ray tracing. The optimized tree is
 traversed in each intersection test.

Problem We choose to vary the number of spheres in scene because it defines the
Size number of geometries to traverse in intersection test. Naturally, we want
Analysis to see if the optimized BVHs is indeed faster.

Runtime The ray tracing runtime with optimized BVH is much better than that of
Analysis original BVH because the tree quality becomes much better. Hence, less

 branches are traversed such that the intersection test becomes more
 cache-friendly (less memory accessed). Obviously, we observe that the ray
 tracing runtime with optimized BVHs is more like O(log n). The SIMD
 utilization doesn’t change much because the rays are still bouncing back
 and forward in random unexpected patterns.

Graph 3.5: Correlation analysis of runtime of BVHs optimization and # of spheres

Dependent Variable The time of BVHs optimization measured in unit of seconds

Independent Variable The number of spheres in scene

Configuration of Red line BVHs was already constructed on GPU, and then the tree is

 optimized (reconstructed) parallelly on GPU.

Problem We choose to vary the number of spheres in scene because it defines the
Size number of geometries to insert in BVHs construction. Naturally, we want to see
Analysis if increase in geometries affects BVHs construction time.

Runtime The runtime of BVH optimization scales linearly just as that of BVH
 Analysis construction, because they both operate in a bottom-up fashion such that half
 of the CUDA threads terminate in every level of BVHs. As a result, the graph

is also linear with regard to the number of geometries.

In the process of optimization, we used dynamic programming to figure out the

optimal partitioning. Therefore, the data locality and SIMD utilization are both high.

Data locality is high because our working set is an array of 2^7=128 characters (the

total number of partitions of 7 leaves in a treelet is 2^7). SIMD utilization is high

because the execution path in dynamic programming are pre-determined. Thus,

even though our optimization brings the BVHs to a golden standard, the optimization

step only cost a relatively little time.

5. Reference
I. Beason, Kevin. "Smallpt: Global Illumination in 99 Lines of C++."

Kevinbeason.com. N.p., n.d. Web. 10 May 2015.
<http://www.kevinbeason.com/smallpt/>.

II. Tero Karras. 2012. Maximizing parallelism in the construction of BVHs, octrees, and k-

d trees. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics conference on

High-Performance Graphics (EGGH-HPG'12), Carsten Dachsbacher, Jacob Munkberg,

and Jacopo Pantaleoni (Eds.). Eurographics Association, Aire-la-Ville, Switzerland,

Switzerland, 33-37. DOI=10.2312/EGGH/HPG12/033-037

http://dx.doi.org/10.2312/EGGH/HPG12/033-037

III. Tero Karras and Timo Aila. 2013. Fast parallel construction of high-quality

bounding volume hierarchies. In Proceedings of the 5th High-Performance

Graphics Conference (HPG '13). ACM, New York, NY, USA, 89-99.
DOI=10.1145/2492045.2492055
http://doi.acm.org/10.1145/2492045.2492055

http://www.kevinbeason.com/smallpt/
http://dx.doi.org/10.2312/EGGH/HPG12/033-037
http://doi.acm.org/10.1145/2492045.2492055

