
Fault-Tolerant Dynamic Task Allocation
 HingOn Miu

Carnegie Mellon University

hmiu@andrew.cmu.edu

ABSTRACT
If one process is assigned with m tasks, the

analysis of completing all the tasks is fairly easy

because all tasks must be done sequentially;

however, it is much harder to analyze how to

complete all the tasks with p concurrent processes

using as little resources as possible. In this paper,

we are interested in analyzing p asynchronous

processes that cooperate to perform m tasks. We

first introduce the problem statement and several

important environmental factors. Then, we

explain some interesting approaches to the

problem. This allows us to gain a good

understanding of how to allocate tasks to

processes dynamically under adversarial settings.

KEYWORD
Dynamic task allocation, distributed computing,

adversary, asynchronous, crashes, partitionable

network, deterministic, randomized, To-Do Tree

INTRODUCTION
In modern days, distributed computing has been a

major topic because the computational power of a

single machine can no longer keep up with the

complexity of the problems. Therefore, software

developers and researchers study extensively how

to distribute work among multiple machines.

Hence, a huge emphasis lies on the efficiency of

the task scheduler: how m tasks can be distributed

among p processes efficiently. In an ideal

environment with no adversity to interfere with

the computation, a simple load balancer can do

the job fairly well such that each processor is

assigned with Θ(m / p) work and that each task is

executed exactly once. However, given the

realistic distributed platforms, the task scheduling

algorithm must be able to deal with adverse

conditions. Therefore, different adversarial

environments of distributed platforms must be

considered so that the task scheduling algorithm

is sufficiently robust.

PROCESS FAILURES A processor may

experience unexpected failure, such as a crash.

So, the system must have mechanism to reassign

the pending tasks among other processors such

that all processes may not wait on the crashed

processor indefinitely. Therefore, the system at

most allows p – 1 crashes such that at least one

process is running at any time. Also, if the

processes are asynchronous such that each has

various processing speed, some process may be

arbitrarily slow. So, faster processors may remain

idle for arbitrarily long time while they wait for

the slow processor to complete the task. Hence,

the system should be able to detect the abnormal

behaviors of a processor, and redistributed the

tasks among other processors.

COMMUNICATION Processors may experience

intermittent connectivity such that information on

the network may be lost. So, the system should

develop mechanism to guarantee that the

receiving processor gets the proper message from

the sending processor. Also, the network may be

fragmented such that some processor may only

communicate with processors in its own partition,

but not the processors in other partitions.

Moreover, the network may have unpredictable

delays, and so a processor may remain idle

waiting for certain event acknowledgment. Thus,

it is essential that the system should be able to

detect abnormal network problems, and attempt

to resolve the issue by resending messages or

reassigning tasks.

REAL LIFE APPLICATIONS The significance

of fault-tolerant distributed computing lies in

many real life applications. Transportation

systems that schedule trains and planes have to be

fault-tolerant, or else there are safety concerns.

Banking and stock market systems have to be

fault-tolerant as well, or else there are reliability

concerns. Other real life applications include

telecommunication systems, medical systems, etc.

ASSUMPTIONS The tasks are assumed to be

similar, independent, and idempotent. By

similarity of the tasks, it means that the task

executions consume comparable resources. By

independence of the tasks, the tasks can be

executed in any order. By idempotence of the

tasks, each task should be executed at least once.

The processors are assumed to be either

synchronous or asynchronous. Synchronous

processes are governed by a global clock such

that all processes run in the same processing

speed. Asynchronous processes are governed by

local clocks such that each run in arbitrary

processing speed. The system is assumed to be

either centralized or decentralized. One master

process handles all the task allocations in a

centralized system. All processes cooperate with

each other and determine their next tasks to

execute themselves in a decentralized system.

PROBLEM STATEMENT Given a set of m

tasks, p processors perform all tasks under

adversary A. This problem is solved when at least

one of the p processors knows all m tasks are

completed. To better analyze the total work of a

task scheduling algorithm T, we define the total

work S calculation as the following [1].

An execution context is defined as the

environment for p processors to execute m tasks,

and an adversary decides the execution context.

Let ε be the execution condition given the

adversary A. Let τ(ε) be the total time T spent on

solving the problem under execution condition ε.

Let Xi j be the Boolean variable that indicates

whether processor pj executes work at time step i.

The obvious lower bound on total work is Ω(m)

because each task must be completed at least

once. A trivial solution is making each of the p

processes to run all m tasks such that the system

ensures that all m tasks are executed. Although

this solution requires no communication among

processors, each processor has Θ(m) work and so

the total work is Θ(m p). Thus, researchers strive

to develop a task scheduling algorithm that is

much efficient than this trivial solution.

DETERMINISTIC SOLUTION
For deterministic approaches to this problem, we

mainly investigate two types of adversarial

settings, which are a system with maximum f < p

crashes and a system with maximum f < p

partitioned networks.

CRASHES First of all, we assume that once a

processor is crashed, it does not restart. The

system allows at most p – 1 crashes, but we

assume reliable multicast is available such that

either a message is successfully delivered to all

processors or no processor receives the message.

The system assumes reliable multicast

communication because many realistic distributed

platforms have reliable message broadcasting,

such as Ethernet and bypass rings. It is important

that we separate the concerns between handling

processor failures and handling network failures

since we can then construct solutions with a

higher modularity.

The main idea of algorithm AN is that all

processors are workers and some of them are

coordinators at various iterations of the algorithm.

Coordinators collect the progress of all

processors, while workers report their progress to

coordinators. For simplicity, coordinators report

progress to themselves as well. The number of

coordinators is determined by the martingale

principle: if all coordinators crash in a iteration,

the number of coordinators is doubled for the

next iteration; if at least one coordinator does not

crash in a iteration, the number of coordinators is

reduced to one for the next iteration.

Therefore, each processor maintains a balanced

binary tree B of the id’s of online processors,

such that the number of processors in each level

is double of the number of processors in previous

level (except the last level). All online processors

update their own local B at the end of each

iteration so that crashed processors are removed

from B. Initially, processor in level 0 of B is

assigned to be coordinator. If no coordinator

survives after the iteration, processors in level 1

are assigned to be coordinators for the next

iteration. Therefore, processors in level i are

assigned coordinators if all 2
i - 1

 processors in

level i – 1 crash in previous iteration.

(a) B at 1
st
 iteration

(b) B at 2

nd
 iteration

(c) B at 3

rd
 iteration

Figure 1: Example of a local B getting updated in each

iteration. In (a), root of B is initially assigned as the

coordinator. In (b), processor 1 and 4 crashed. Since the

only coordinator crashed, so the next level in B is assigned

as coordinators. In (c), processor 2 crashed. Since no

coordinator crashed, so the root of B is again assigned as

coordinator.

Also, each processor maintains a local list U for

all unaccounted tasks. In a iteration, the load

balancing rule is that each worker with its

processor id in level h of its local B, executes the

jth task in its local U, where j = (h mod |U|).

Then, all workers report their progress to

coordinators. Here is the implementation of the

algorithm AN [1]:

def AN:

while U is not empty:

1. executes task j

2. report task j to coordinators

3. coordinators gather reports

4. coordinators update U and B

5. coordinators multicast U and B to all

6. gathers summary from coordinators

7. updates local U and B

To analyze the complexity of algorithm AN, we

define the total work S = Sa + Sb, where Sa

accounts for the iterations that the processors

survive and Sb accounts for iterations that the

processors crash. Let |Bi| be the number of

remaining online processors and |Ui| be the

number of remaining unaccounted tasks in

iteration i.

First, we consider Sa with two cases: the iterations

with |Bi| ≤ |Ui| and the iterations with |Bi| > |Ui|. In

the first case, the load balancing rule allows at

most one processor to be assigned to each of the

unaccounted tasks, and so the total processor

work S1 is equivalent to total tasks executed,

which is O(m + p).

In the second case, we define a constant d to be

log p / log log p. Then, we consider two sub-

cases: |Ui + 1| < |Ui| / d and |Ui + 1| ≥ |Ui| / d. In the

first sub-case, it is obvious that there is at most of

O(logd p) such iterations because |Ui + 1| < |Ui| < p.

Since d
d
 = Θ(p), we know that O(logd p) = O(d).

Because there is at most p processors with such

iterations, the total work S2.1 is O(p d).

In the second sub-case, the load balancing rule

ensures at least ⌊|Bi| / |Ui|⌋ processors are assigned

to each of the unaccounted tasks since |Bi| > |Ui|.

Since |Ui+1| unaccounted tasks remained, then the

number of crashed processor in the ith iteration is

at least |Ui+1| * ⌊|Bi| / |Ui|⌋ ≥ (|Ui| / d) * (|Bi| / 2|Ui|)

= |Bi| / 2d. So, the number of online processors for

the next iteration is at most |Bi| – |Bi| / 2d, which

is O(p (1 – 1 / 2d)). Let there be k such iterations

in this sub-case so that the first iteration of these

has at most p online processors, and so each of

these subsequent iterations j should then have at

most p (1 – 1 / 2d)
j
 online processors. Since the

number of online processors in a iteration equals

to the number of unit work done in that iteration,

we conclude the total work S2.2 as following:

Next, we consider Sb. Say the system allows f

crashes, where f < p. The number of iterations in

which processors crash is at most log f [1]. The

total work Sb should be the sum of the number of

online processors in all iterations with processors

crash, since each online processor in a iteration

represent one unit of work, and so we have the

following:

PARTITIONABLE NETWORKS First of all,

we again assume reliable multi-cast is available.

We assume the network is not fragmented

initially. However, the network can be partitioned

progressively during the task executions. Once

the network is fragmented, processors of distinct

fragments cannot communicate, while processors

in the same fragment can communicate. Since

there are p processors, we know the number of

fragmentation failures f allowed is at most p – 1.

This is the case when there are p fragments in the

network, each contains one processor. Since

processors in different fragments cannot

communicate, some processor may learn that all

tasks are executed but it cannot inform processors

in other fragments to terminate. So, it is essential

for each processor to learn that all tasks are

executed before it terminates.

The basic idea of algorithm AF is that each

processor executes one of the remaining

unaccounted tasks according to its load balancing

rule until it learns all tasks have been executed.

The set T of the initial m tasks are known to all

processors. Each processor maintains a local set

D of tasks that are known as already executed.

So, each processor knows the set U of remaining

unaccounted tasks. Each processor also maintains

a local set F of processors in the current

fragment. Since all tasks and all processors have

unique id’s, we can assume U and F are sorted.

The load balancing rule is defined as the

following: say the processor i has rank k in F,

then it executes the task with rank k mod |U|.

Hence, in each iteration, each processor

broadcasts and updates its local U and F, and then

it executes a task according to its load balancing

rule. At any point of execution, if a processor

finds its local U is empty, it terminates.

Therefore, this algorithm terminates when all

processors terminate.

Now, we analyze the work complexity of AF.

Since each processor keeps track of tasks

executed in local D, it never executes more than

m tasks. Since each processor executes at least

one unaccounted task in each iteration, there are

at most m iterations. Since there are at most f + 1

fragments and each fragmentation failure causes

each processor to become a member of at most

one new fragment, we know that any processor is

a member of at most f + 1 fragments during the

computation. Since there are p processors in total,

we can conclude the total work of the iterations

with new fragmentation failures is O(p * (f + 1))

= O(p * f).

To compute the total work of the iterations

without new fragmentation failures, we consider

two cases: |U| < |F| and |U| ≥ |F|. In the first case,

all remaining unaccounted tasks can be

completed in one iteration since the number of

processors in current fragment is more than the

number of remaining accounted tasks. Since each

group of processors of distinct fragments has at

least one such iteration and there are at most f + 1

fragments, there are O(f + 1) such iterations.

Since the number of tasks executed in such

iteration is bounded by |F|, the number of tasks

executed in such iteration is O(p). Therefore, the

total work of these iterations is O(p) * O(f + 1) =

O(p * f).

In the second case, the number of processors in

current fragment is less than or equal to the

number of remaining accounted tasks. Since each

iteration completes |F| unaccounted tasks, we

know that there can be no more than ⌊|U| / |F|⌋

iterations in each fragment. Because the number

of tasks executed in any of these iterations is

bounded by |F|, the work of these iterations in one

fragment is then O(⌊|U| / |F|⌋ * | F|) = O(|U|) =

O(m). Hence, since there are at most f + 1

fragments, we know that the total work of these

iterations is O(m) * O(f + 1) = O(m * f).

Therefore, we can conclude the total work of AF

is the following [4]:

RANDOMIZED SOLUTION
For randomized approaches to this problem, we

investigate a recent algorithm proposed by Dan

Alistarh, Michael Bender, Seth Gilbert, and

Rachid Guerraoui [2].

TO-DO TREE The choice of which task each

processor execute next is guided by a balanced

binary tree called a To-Do tree. Each leaf

represents a fixed number of tasks, so there are m

leaves if each leaf represents one task. Each node

also contains a min-register, which is a storage

unit to record the number of unaccounted tasks in

the sub-tree of this node. The min-register is a

concurrent data structure that supports write and

read operations that returns the smallest value

previously written. A min-register with value v

stored within takes O(log v) work for each read

and write operations [3], and so it is clear that the

work is O(log m) in the case of storing m tasks in

the tree.

Each processor decides which task to execute

next by performing a tree-walk. The tree-walk

begins at the root node of the To-Do tree. The

processor checks the min-register at the root node,

and so it knows all tasks are executed when it

reads 0. Otherwise, the processor traverses the

tree by reading the left child’s min-register value

a and the right child’s min-register value b. The

processor then computes a random real number r

between 0 and 1. If r < a / (a + b), the processor

proceeds to the left child. Otherwise, the

processor proceeds to the right child. So, it is

obvious to see that a processor is more likely to

execute task in the sub-tree with more

unaccounted tasks.

The traversal ends when either the processor

reaches a leaf node or reads both 0 from left and

right children’s min-register. In the first case, the

processor executes all the tasks on the leaf node

and writes 0 to the min-register of the leaf node

when all tasks on the leaf node are executed.

Then, the processor proceeds to its parent node

and update the parent node’s min-register. The

procedure terminates after the root node’s min-

register is updated.

(a) Original To-Do Tree

(b) Traversing To-Do Tree

(c) Updating To-Do Tree

Figure 2: Example of a processor executing tasks in To-Do

Tree. In (a), the leaves contain the number of unaccounted

tasks, and the internal nodes contain the sum of

unaccounted tasks from both children. The labels on the

edges are the probability of a processor proceeding from

those edges. In (b), a processor reaches a leaf and executes

all unaccounted tasks in that leaf. In (c), the processor

updates each parent nodes until it reaches the root node.

Since the To-Do tree is a concurrent data

structure, all processors are accessing the tree at

the same time. It is obvious that all m tasks are

guaranteed to be executed eventually after some

tree-walks. To analyze the total work of

completing m tasks with p processors, we split the

execution into two epochs: the total work when

the remaining unaccounted tasks ≥ 2p and the

total work when the remaining unaccounted tasks

< 2p. Each epoch is then split into phases. The

number of remaining leaves with min-register

value ≥ 1 decreases by p in each phase of the first

epoch, while the number of remaining leaves with

min-register value ≥ 1 decreases by a factor of 2

in each phase of the second epoch. Therefore, we

conclude that there are at most m/p + log22p =

O(m/p + log p) phases to complete executing all

m tasks.

Knowing that there are O(m/p + log p) phases in

total, there may be more than p tree-walks in

some phase by bad luck if p is much smaller than

m. By Chernoff bound, we can conclude that each

phase has O(p) tree-walks [2]. Hence, we then

have O(p) * O(m/p + log p) = O(m + p log p)

tree-walks in total. Since traversing the To-Do

tree takes O(log

m) and reading/writing each min-

register takes O(log

m), we know that each tree-

walk takes O(log
2
 m) steps. Therefore, we

conclude that the total work is O(m + p log p) *

O(log
2
 m) = O(m log

2
 m + p log p log

2
 m).

Moreover, if we set the number of tasks in each

leaf node as log
2
 m, the total work can be

minimized to the following [2]:

CONCLUSION
In this paper, we investigate multiple approaches

of fault-tolerant dynamic task scheduling that

deal with various adversarial settings. While these

algorithms can handle faults in realistic

distributed platforms very well, we must ask

ourselves whether there is some algorithm that

can do the same job with a lower work

complexity. Hence, many ongoing researches are

concerned with improving the current best

algorithms and achieving a lower cost bound.

REFERENCES

[1] C. Georgiou and A. Shvartsman, Do-all

computing in distributed systems. New

York: Springer, 2008.

[2] D. Alistarh, M. Bender, S. Gilbert and R.

Guerraoui, 'How to Allocate Tasks

Asynchronously', in Foundations of

Computer Science, New Brunswick, NJ,

2012, pp. 331 - 340.

[3] J. Aspnes, H. Attiya and K. Censor-Hillel,

'Polylogarithmic concurrent data

structures from monotone circuits',

JACM, vol. 59, no. 1, pp. 1-24, 2012.

[4] S. Dolev, R. Segala and A. Shvartsman,

'Dynamic load balancing with group

communication', Theoretical Computer

Science, vol. 369, no. 1-3, pp. 348-360,

2006.

