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ABSTRACT 
If one process is assigned with m tasks, the 

analysis of completing all the tasks is fairly easy 

because all tasks must be done sequentially; 

however, it is much harder to analyze how to 

complete all the tasks with p concurrent processes 

using as little resources as possible. In this paper, 

we are interested in analyzing p asynchronous 

processes that cooperate to perform m tasks. We 

first introduce the problem statement and several 

important environmental factors. Then, we 

explain some interesting approaches to the 

problem. This allows us to gain a good 

understanding of how to allocate tasks to 

processes dynamically under adversarial settings. 
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INTRODUCTION 
In modern days, distributed computing has been a 

major topic because the computational power of a 

single machine can no longer keep up with the 

complexity of the problems. Therefore, software 

developers and researchers study extensively how 

to distribute work among multiple machines. 

Hence, a huge emphasis lies on the efficiency of 

the task scheduler: how m tasks can be distributed 

among p processes efficiently. In an ideal 

environment with no adversity to interfere with 

the computation, a simple load balancer can do 

the job fairly well such that each processor is 

assigned with Θ(m / p) work and that each task is 

executed exactly once. However, given the 

realistic distributed platforms, the task scheduling 

algorithm must be able to deal with adverse 

conditions. Therefore, different adversarial 

environments of distributed platforms must be 

considered so that the task scheduling algorithm 

is sufficiently robust. 

 

PROCESS FAILURES A processor may 

experience unexpected failure, such as a crash. 

So, the system must have mechanism to reassign 

the pending tasks among other processors such 

that all processes may not wait on the crashed 

processor indefinitely. Therefore, the system at 

most allows p – 1 crashes such that at least one 

process is running at any time. Also, if the 

processes are asynchronous such that each has 

various processing speed, some process may be 

arbitrarily slow. So, faster processors may remain 

idle for arbitrarily long time while they wait for 

the slow processor to complete the task. Hence, 

the system should be able to detect the abnormal 

behaviors of a processor, and redistributed the 

tasks among other processors. 

 

COMMUNICATION Processors may experience 

intermittent connectivity such that information on 

the network may be lost. So, the system should 

develop mechanism to guarantee that the 

receiving processor gets the proper message from 

the sending processor. Also, the network may be 

fragmented such that some processor may only 

communicate with processors in its own partition, 

but not the processors in other partitions. 

Moreover, the network may have unpredictable 

delays, and so a processor may remain idle 

waiting for certain event acknowledgment. Thus, 

it is essential that the system should be able to 



detect abnormal network problems, and attempt 

to resolve the issue by resending messages or 

reassigning tasks. 

 

REAL LIFE APPLICATIONS The significance 

of fault-tolerant distributed computing lies in 

many real life applications. Transportation 

systems that schedule trains and planes have to be 

fault-tolerant, or else there are safety concerns. 

Banking and stock market systems have to be 

fault-tolerant as well, or else there are reliability 

concerns. Other real life applications include 

telecommunication systems, medical systems, etc. 

 

ASSUMPTIONS The tasks are assumed to be 

similar, independent, and idempotent. By 

similarity of the tasks, it means that the task 

executions consume comparable resources. By 

independence of the tasks, the tasks can be 

executed in any order. By idempotence of the 

tasks, each task should be executed at least once. 

The processors are assumed to be either 

synchronous or asynchronous. Synchronous 

processes are governed by a global clock such 

that all processes run in the same processing 

speed. Asynchronous processes are governed by 

local clocks such that each run in arbitrary 

processing speed. The system is assumed to be 

either centralized or decentralized. One master 

process handles all the task allocations in a 

centralized system. All processes cooperate with 

each other and determine their next tasks to 

execute themselves in a decentralized system. 

 

PROBLEM STATEMENT Given a set of m 

tasks, p processors perform all tasks under 

adversary A. This problem is solved when at least 

one of the p processors knows all m tasks are 

completed. To better analyze the total work of a 

task scheduling algorithm T, we define the total 

work S calculation as the following [1]. 

 

An execution context is defined as the 

environment for p processors to execute m tasks, 

and an adversary decides the execution context. 

Let ε be the execution condition given the 

adversary A. Let τ(ε) be the total time T spent on 

solving the problem under execution condition ε. 

Let Xi j be the Boolean variable that indicates 

whether processor pj executes work at time step i. 

 

          
    

        

 

   

    

   

 

 

The obvious lower bound on total work is Ω(m) 

because each task must be completed at least 

once. A trivial solution is making each of the p 

processes to run all m tasks such that the system 

ensures that all m tasks are executed. Although 

this solution requires no communication among 

processors, each processor has Θ(m) work and so 

the total work is Θ(m p).  Thus, researchers strive 

to develop a task scheduling algorithm that is 

much efficient than this trivial solution. 

 

DETERMINISTIC SOLUTION 
For deterministic approaches to this problem, we 

mainly investigate two types of adversarial 

settings, which are a system with maximum f < p 

crashes and a system with maximum f < p 

partitioned networks. 

 

CRASHES First of all, we assume that once a 

processor is crashed, it does not restart. The 

system allows at most p – 1 crashes, but we 

assume reliable multicast is available such that 

either a message is successfully delivered to all 

processors or no processor receives the message. 

The system assumes reliable multicast 

communication because many realistic distributed 

platforms have reliable message broadcasting, 

such as Ethernet and bypass rings. It is important 

that we separate the concerns between handling 

processor failures and handling network failures 

since we can then construct solutions with a 

higher modularity. 



 

The main idea of algorithm AN is that all 

processors are workers and some of them are 

coordinators at various iterations of the algorithm. 

Coordinators collect the progress of all 

processors, while workers report their progress to 

coordinators. For simplicity, coordinators report 

progress to themselves as well. The number of 

coordinators is determined by the martingale 

principle: if all coordinators crash in a iteration, 

the number of coordinators is doubled for the 

next iteration; if at least one coordinator does not 

crash in a iteration, the number of coordinators is 

reduced to one for the next iteration. 

 

Therefore, each processor maintains a balanced 

binary tree B of the id’s of online processors, 

such that the number of processors in each level 

is double of the number of processors in previous 

level (except the last level). All online processors 

update their own local B at the end of each 

iteration so that crashed processors are removed 

from B. Initially, processor in level 0 of B is 

assigned to be coordinator. If no coordinator 

survives after the iteration, processors in level 1 

are assigned to be coordinators for the next 

iteration. Therefore, processors in level i are 

assigned coordinators if all 2
i - 1

 processors in 

level i – 1 crash in previous iteration. 

 

 

(a) B at 1
st
 iteration 

 

 
(b) B at 2

nd
 iteration 

 
(c) B at 3

rd
 iteration 

Figure 1: Example of a local B getting updated in each 

iteration. In (a), root of B is initially assigned as the 

coordinator. In (b), processor 1 and 4 crashed. Since the 

only coordinator crashed, so the next level in B is assigned 

as coordinators. In (c), processor 2 crashed. Since no 

coordinator crashed, so the root of B is again assigned as 

coordinator. 

 

Also, each processor maintains a local list U for 

all unaccounted tasks. In a iteration, the load 

balancing rule is that each worker with its 

processor id in level h of its local B, executes the 

jth task in its local U, where j = (h mod |U|). 

Then, all workers report their progress to 

coordinators. Here is the implementation of the 

algorithm AN [1]: 

 

def AN: 

while U is not empty: 

1. executes task j 

2. report task j to coordinators 

3. coordinators gather reports 

4. coordinators update U and B 

5. coordinators multicast U and B to all 

6. gathers summary from coordinators 

7. updates local U and B 



To analyze the complexity of algorithm AN, we 

define the total work S = Sa + Sb, where Sa 

accounts for the iterations that the processors 

survive and Sb accounts for iterations that the 

processors crash. Let |Bi| be the number of 

remaining online processors and |Ui| be the 

number of remaining unaccounted tasks in 

iteration i. 

 

First, we consider Sa with two cases: the iterations 

with |Bi| ≤ |Ui| and the iterations with |Bi| > |Ui|. In 

the first case, the load balancing rule allows at 

most one processor to be assigned to each of the 

unaccounted tasks, and so the total processor 

work S1 is equivalent to total tasks executed, 

which is O(m + p). 

 

In the second case, we define a constant d to be 

log p / log log p. Then, we consider two sub-

cases: |Ui + 1| < |Ui| / d and |Ui + 1| ≥ |Ui| / d. In the 

first sub-case, it is obvious that there is at most of 

O(logd p) such iterations because |Ui + 1| < |Ui| < p. 

Since d
d
 = Θ(p), we know that O(logd p) = O(d). 

Because there is at most p processors with such 

iterations, the total work S2.1 is O(p d). 

 

In the second sub-case, the load balancing rule 

ensures at least ⌊|Bi| / |Ui|⌋ processors are assigned 

to each of the unaccounted tasks since |Bi| > |Ui|. 

Since |Ui+1| unaccounted tasks remained, then the 

number of crashed processor in the ith iteration is 

at least |Ui+1| * ⌊|Bi| / |Ui|⌋ ≥ (|Ui| / d) * (|Bi| / 2|Ui|) 

= |Bi| / 2d. So, the number of online processors for 

the next iteration is at most |Bi|  – |Bi| / 2d, which 

is O(p (1 – 1 / 2d)). Let there be k such iterations 

in this sub-case so that the first iteration of these 

has at most p online processors, and so each of 

these subsequent iterations j should then have at 

most p (1 – 1 / 2d) 
j
 online processors. Since the 

number of online processors in a iteration equals 

to the number of unit work done in that iteration, 

we conclude the total work S2.2 as following: 

 

          
 

  
  

 

   

 
 

     
 
  

 
       

                        

      
    

       
  

 

Next, we consider Sb. Say the system allows f 

crashes, where f < p. The number of iterations in 

which processors crash is at most log f [1]. The 

total work Sb should be the sum of the number of 

online processors in all iterations with processors 

crash, since each online processor in a iteration 

represent one unit of work, and so we have the 

following: 

 

                        

           

                  
     

       
  

 

PARTITIONABLE NETWORKS First of all, 

we again assume reliable multi-cast is available. 

We assume the network is not fragmented 

initially. However, the network can be partitioned 

progressively during the task executions. Once 

the network is fragmented, processors of distinct 

fragments cannot communicate, while processors 

in the same fragment can communicate. Since 

there are p processors, we know the number of 

fragmentation failures f allowed is at most p – 1. 

This is the case when there are p fragments in the 

network, each contains one processor. Since 

processors in different fragments cannot 

communicate, some processor may learn that all 

tasks are executed but it cannot inform processors 

in other fragments to terminate. So, it is essential 

for each processor to learn that all tasks are 

executed before it terminates. 

 



The basic idea of algorithm AF is that each 

processor executes one of the remaining 

unaccounted tasks according to its load balancing 

rule until it learns all tasks have been executed. 

The set T of the initial m tasks are known to all 

processors. Each processor maintains a local set 

D of tasks that are known as already executed. 

So, each processor knows the set U of remaining 

unaccounted tasks. Each processor also maintains 

a local set F of processors in the current 

fragment. Since all tasks and all processors have 

unique id’s, we can assume U and F are sorted. 

The load balancing rule is defined as the 

following: say the processor i has rank k in F, 

then it executes the task with rank k mod |U|. 

Hence, in each iteration, each processor 

broadcasts and updates its local U and F, and then 

it executes a task according to its load balancing 

rule. At any point of execution, if a processor 

finds its local U is empty, it terminates. 

Therefore, this algorithm terminates when all 

processors terminate. 

 

Now, we analyze the work complexity of AF. 

Since each processor keeps track of tasks 

executed in local D, it never executes more than 

m tasks. Since each processor executes at least 

one unaccounted task in each iteration, there are 

at most m iterations. Since there are at most f + 1 

fragments and each fragmentation failure causes 

each processor to become a member of at most 

one new fragment, we know that any processor is 

a member of at most f + 1 fragments during the 

computation. Since there are p processors in total, 

we can conclude the total work of the iterations 

with new fragmentation failures is O(p * (f + 1))  

= O(p * f ). 

 

To compute the total work of the iterations 

without new fragmentation failures, we consider 

two cases: |U| < |F| and |U| ≥ |F|. In the first case, 

all remaining unaccounted tasks can be 

completed in one iteration since the number of 

processors in current fragment is more than the 

number of remaining accounted tasks. Since each 

group of processors of distinct fragments has at 

least one such iteration and there are at most f + 1 

fragments, there are O(f + 1) such iterations. 

Since the number of tasks executed in such 

iteration is bounded by |F|, the number of tasks 

executed in such iteration is O(p). Therefore, the 

total work of these iterations is O(p) * O(f + 1) = 

O(p * f ). 

 

In the second case, the number of processors in 

current fragment is less than or equal to the 

number of remaining accounted tasks. Since each 

iteration completes |F| unaccounted tasks, we 

know that there can be no more than ⌊|U| / |F|⌋ 

iterations in each fragment. Because the number 

of tasks executed in any of these iterations is 

bounded by |F|, the work of these iterations in one 

fragment is then O(⌊|U| / |F|⌋ * | F|) = O(|U|) = 

O(m). Hence, since there are at most f + 1 

fragments, we know that the total work of these 

iterations is O(m) * O(f + 1) = O(m * f). 

Therefore, we can conclude the total work of AF 

is the following [4]: 

 

                 
            

 

RANDOMIZED SOLUTION 
For randomized approaches to this problem, we 

investigate a recent algorithm proposed by Dan 

Alistarh, Michael Bender, Seth Gilbert, and 

Rachid Guerraoui [2]. 

 

TO-DO TREE The choice of which task each 

processor execute next is guided by a balanced 

binary tree called a To-Do tree. Each leaf 

represents a fixed number of tasks, so there are m 

leaves if each leaf represents one task. Each node 

also contains a min-register, which is a storage 

unit to record the number of unaccounted tasks in 

the sub-tree of this node. The min-register is a 

concurrent data structure that supports write and 

read operations that returns the smallest value 

previously written. A min-register with value v 



stored within takes O(log v) work for each read 

and write operations [3], and so it is clear that the 

work is O(log m) in the case of storing m tasks in 

the tree. 

 

Each processor decides which task to execute 

next by performing a tree-walk. The tree-walk 

begins at the root node of the To-Do tree. The 

processor checks the min-register at the root node, 

and so it knows all tasks are executed when it 

reads 0. Otherwise, the processor traverses the 

tree by reading the left child’s min-register value 

a and the right child’s min-register value b. The 

processor then computes a random real number r 

between 0 and 1. If r < a / (a + b), the processor 

proceeds to the left child. Otherwise, the 

processor proceeds to the right child. So, it is 

obvious to see that a processor is more likely to 

execute task in the sub-tree with more 

unaccounted tasks. 

 

The traversal ends when either the processor 

reaches a leaf node or reads both 0 from left and 

right children’s min-register. In the first case, the 

processor executes all the tasks on the leaf node 

and writes 0 to the min-register of the leaf node 

when all tasks on the leaf node are executed. 

Then, the processor proceeds to its parent node 

and update the parent node’s min-register. The 

procedure terminates after the root node’s min-

register is updated. 

 

 

(a) Original To-Do Tree 

 

(b) Traversing To-Do Tree 

 

(c) Updating To-Do Tree 

Figure 2: Example of a processor executing tasks in To-Do 

Tree. In (a), the leaves contain the number of unaccounted 

tasks, and the internal nodes contain the sum of 

unaccounted tasks from both children. The labels on the 

edges are the probability of a processor proceeding from 

those edges. In (b), a processor reaches a leaf and executes 

all unaccounted tasks in that leaf. In (c), the processor 

updates each parent nodes until it reaches the root node. 

 

Since the To-Do tree is a concurrent data 

structure, all processors are accessing the tree at 

the same time. It is obvious that all m tasks are 

guaranteed to be executed eventually after some 

tree-walks. To analyze the total work of 

completing m tasks with p processors, we split the 

execution into two epochs: the total work when 

the remaining unaccounted tasks ≥ 2p and the 

total work when the remaining unaccounted tasks 

< 2p. Each epoch is then split into phases. The 

number of remaining leaves with min-register 

value ≥ 1 decreases by p in each phase of the first 



epoch, while the number of remaining leaves with 

min-register value ≥ 1 decreases by a factor of 2 

in each phase of the second epoch. Therefore, we 

conclude that there are at most m/p + log22p = 

O(m/p + log p) phases to complete executing all 

m tasks. 

 

Knowing that there are O(m/p + log p) phases in 

total, there may be more than p tree-walks in 

some phase by bad luck if p is much smaller than 

m. By Chernoff bound, we can conclude that each 

phase has O(p) tree-walks [2]. Hence, we then 

have O(p) * O(m/p + log p) = O(m + p log p) 

tree-walks in total. Since traversing the To-Do 

tree takes O(log
 
m) and reading/writing each min-

register takes O(log
 
m), we know that each tree-

walk takes O(log
2
 m) steps. Therefore, we 

conclude that the total work is O(m + p log p) * 

O(log
2
 m) = O(m log

2
 m + p log p log

2
 m). 

Moreover, if we set the number of tasks in each 

leaf node as log
2
 m, the total work can be 

minimized to the following [2]: 

 

                  

 

CONCLUSION 
In this paper, we investigate multiple approaches 

of fault-tolerant dynamic task scheduling that 

deal with various adversarial settings. While these 

algorithms can handle faults in realistic 

distributed platforms very well, we must ask 

ourselves whether there is some algorithm that 

can do the same job with a lower work 

complexity. Hence, many ongoing researches are 

concerned with improving the current best 

algorithms and achieving a lower cost bound. 
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