
 1

Bitcoin SPV Protocol
HingOn Miu

hmiu@andrew.cmu.edu

Background
 Running a Bitcoin full node client to

use its wallet to store Bitcoins is not always

ideal for users, since full node clients have

certain hardware requirements. According

to bitcoin.org, full node requires over a

hundred gigabytes of free disk space, 2

gigabytes of RAM, internet connection

with upload speeds of at least 50 kilobytes

per second, and 6 or more hours to be left

running per day. So, it is fair to expect that

most of that disk space is used to store the

Bitcoin blockchain. As of 2017, according

to statistics by blockchain.com, the total

size of raw Bitcoin blockchain is about 130

gigabytes. Since full node client keeps a

copy of entire raw blockchain and it could

take hours or even days to download all

blockchain files, casual Bitcoin user should

not be always running full node client just

to use its wallet to store a few Bitcoins.

According to original Bitcoin paper

by Satoshi Nakamoto, Simplified Payment

Verification (SPV) is a secure method for

Bitcoin user to verify payments without

running full node. Instead of keeping the

entire blockchain like a full node client,

SPV client only needs to keep a copy of all

the block headers, as SPV protocol verifies

a transaction by querying full nodes to

obtain Merkle branches for that transaction.

It then uses the Merkle tree structure for

proof of inclusion by recomputing each

ancestor hash with Merkle branches and

matching the Merkle root hash in the block

header, without the need to parse the entire

block to look for that transaction.

As of 2017, according to statistics

by blockchain.com, the total number of

blocks in blockchain is about 500,000. As

each block headers takes exactly 80 bytes,

each instance of SPV client requires merely

500,000 * 80 bytes = 40 megabytes of disk

storage for all block headers. Therefore,

running a SPV client certainly has a much

lighter hardware requirement than running

a full node client, and so it is a better choice

for casual Bitcoin users.

Usage
1. Install Python dependencies and

Bitcoin core. Run Bitcoin full node to

download complete raw .dat blockchain

files.

2. Run a local instance of full node proxy

and provide the proxy the directory path

 2

to the raw blockchain files. Wait for the

full node proxy parses each block of the

raw blockchain and stores all block

headers to file.

3. Run remote instance(s) of SPV client.

Wait for the SPV client to download

and parse block headers generated by

full node proxy.

4. Enter Bitcoin transaction hash (TXID)

into SPV client interface to verify

transactions and check confirmations.

Example

Full Node Proxy
Before running our proxy, we have

to first run Bitcoin full node to retrieve the

latest complete raw Bitcoin blockchain files.

These files are named blkXXXXX.dat, and

blk00000.dat is the first file of the raw

blockchain. These files are usually located

in ~/.bitcoin/blocks/. After downloading

those raw blockchain files, we can start our

full node proxy and run it localhost to listen

for HTTP GET requests from SPV clients

on port 9000 for testing purpose.

The absolute path of the local

directory that holds those raw Bitcoin

blockchain files has to be provided to our

proxy. After starting our proxy, the setup

stage is initiated before our proxy server

forks worker threads to handle incoming

HTTP connections. The setup stage loads

and parses each blockchain file to compute

block hash for each block and transaction

hash for each transaction.

To compute the block hash of a

block, which is the block header hash, our

proxy parses version number, previous

block hash, Merkle root hash, time, nBits

and nonce of each block. These fields are

concatenated to run SHA-256 hashing

twice to compute the block hash. And of

course, the block header (exactly 80 bytes)

of each block is stored to file for SPV

clients to retrieve later.

To compute the transaction hash of

a transaction, our proxy server parses

transaction version number, input

transaction count, input transactions, output

transaction count, output transactions and

lock time of each transaction. These fields

are concatenated to run SHA-256 hashing

twice to compute the transaction hash. Our

proxy also stores the index of each

transaction within a block in a global

transaction hash table so that finding

transaction index of a transaction takes O(1)

time. This transaction index is essential in

constructing a Merkle tree efficiently, since

it is the transaction’s leaf index in Merkle

tree.

Merkle Tree Construction
For all transactions parsed in each

block, our full node proxy runs Merkle tree

hashing algorithm with all the computed

transaction hashes to verify that the Merkle

root hash in block header is correct. The

bottom-up hashing algorithm runs on every

level of the Merkle tree from the bottom

 3

leaf hashes. Each pair of child hashes are

concatenated to run SHA-256 hashing

twice to compute the parent hash. The

concatenation order of each child hash pair

is determined by index of the child hashes

in each tree level. If a level of Merkle tree

has an even number of hashes, each pair of

hashes is concatenated and hashed in index

order. If a level of Merkle tree has an odd

number of hashes, the last hash is replicated

and appended to the end. The algorithm

terminates only when a single hash is left in

the tree, which is the resulted Merkle root

hash. Below diagram illustrates a case of

computing Merkle root hash for a total of 5

transactions in a block.

The entire Merkle tree of each block

is cached so that full node proxy can

respond Merkle branches to SPV client’s

transaction query faster. Our proxy stores

the cached Merkle tree for each block in a

global block hash table so that finding

cached Merkle tree of a transaction takes

O(1) time. Therefore, as a SPV client query

our proxy server a transaction hash (TXID),

our proxy first finds its transaction index in

O(1) time using the global transaction hash

table. Next, our proxy server finds the

transaction’s corresponding cached Merkle

tree in O(1) time using the global block

hash table.

With the cached Merkle tree and the

leaf index of the transaction, our proxy

server traverses the Merkle tree bottom-up

level by level to collect the transaction’s

Merkle branch pair in each level. Below

diagram illustrates a case of collecting

Merkle branches (in red) for leaf TXID2 to

compute the Merkle root hash.

Obviously, bottom-up traversal of

Merkle tree to collect Merkle branches

takes O(log h) time, where h is the number

of transactions within a block. Since finding

a transaction index takes O(1) time and

collecting Merkle branches in a cached

Merkle tree takes O(log h) time, the overall

response time of our full node proxy to

answer SPV client’s transaction query is

O(log h). Without the Merkle tree cache,

constructing the whole tree of a block to

collect Merkle branches for each SPV client

transaction query takes O(h * log h) time.

This is considerably slower than caching

Merkle tree in full node proxy’s setup stage.

Now, let’s look at the memory

trade-off for caching Merkle tree in setup

stage. Since the size of a Merkle tree takes

(h * log h) / 2 space, the memory of caching

Merkle tree for a block is then O(h * log h).

Therefore, the memory of global block hash

table to cache Merkle tree for all blocks is

then O(b * h * log h), where b is the total

number of blocks in blockchain. As of 2017,

according to statistics by blockchain.com,

the average number of transaction per block

is around 1500, and the total number of

blocks in blockchain is about 500,000. As

each Merkle branch is essentially a 64-

 4

character long SHA-256 hexadecimal hash,

each Python Merkle branch hash string

takes about 100 bytes (check Python built-

in type sizes with sys.getsizeof). Therefore,

caching Merkle tree for all blocks takes

500,000 * (1500 * log 1500) / 2 * 100 bytes

 120 gigabytes.

Certainly, a practical approach is

caching only recent 3-day or 1-week blocks’

Merkle tree as it becomes unlikely for SPV

client users to frequently verify very old

transactions. So, some response delay for

proxy server to construct complete Merkle

tree to collect Merkle branches for old

transactions is likely to be acceptable to

users. As of 2017, according to statistics by

blockchain.com, the average number of

blocks mined per day is about 150. So,

caching Merkle tree for 3-day amount of

blocks in proxy setup stage takes about

3 * 150 * (1500 * log 1500) / 2 * 100 bytes

 100 megabytes. With this in mind, we can

more fairly decide the response time and

memory trade-off for our full node proxy.

SPV Client
After our full node proxy writes all

block headers to file, we can run multiple

remote instances of SPV client. After

starting our SPV client, the setup stage is

initiated to download all block headers

from full node proxy. Next, our SPV client

parses each block header to construct a

global header structure hash table, in which

each block header’s previous block hash is

the key. Therefore, it is now possible to

traverse the blockchain starting from the

genesis block header, as our SPV client can

compute next block header’s block hash

from the block header stored in the hash

table. Note that the previous block hash of

the genesis block is all zero bytes, and so

our client can easily fetch the genesis block

header from hash table with zero string hash.

To compute the block hash of a

block header, our SPV client parses version

number, previous block hash, Merkle root

hash, time, nBits and nonce. These fields

are concatenated to run SHA-256 hashing

twice to compute the block hash. With the

block hash of each header, our SPV client

can identify next block header using the

header hash table.

Next, our SPV client runs breadth

first search from the genesis block header to

compute the distance of each block header

from genesis block header. So, knowing the

distance of each block header, our SPV

client can identify the longest path from

genesis block header, which is the main

chain of blockchain. This breadth first

search pre-processing computation in setup

stage has O(V + E) runtime, so that our SPV

client can answer user’s transaction queries

to verify whether a transaction belongs to a

block in main chain with O(1) runtime.

 5

Merkle Tree Verification
 When SPV client completes setup

stage, user can interact with the client

interface to enter transaction hash (TXID)

to verify Bitcoin transactions and check

confirmations. After a transaction hash is

inputted, our SPV client makes HTTP

query of this transaction to full node proxy

to get the transaction’s corresponding

block’s transaction count, transaction index

within the block and the Merkle branch

pairs of every tree level.

 After full node proxy responded,

our SPV client bottom-up constructs the

Merkle tree structure of the block using just

the transaction count (the number of Merkle

leaves at bottom tree level) and the

transaction index (the index of the Merkle

leaf). With the Merkle tree structure, our

SPV client now identifies the hashing order

with each Merkle branch in each level. The

hashing order is whether concatenating to

right or left of the Merkle branch pair for

each tree level before SHA-256 hashing.

This bottom-up Merkle tree structure

reconstruction takes O(log h) time, where h

is the number of transactions within a block.

Below diagram illustrates a case of

determining the hashing order of each

Merkle branch pair with each level’s

indexes in Merkle tree structure.

With the hashing order of each

Merkle branch pair determined, our SPV

client bottom-up computes the Merkle tree

root using the Merkle branch pairs retrieved

from full node proxy and the Merkle leaf,

which is the user’s transaction ID to verify.

If the computed Merkle tree root matches

the Merkle root hash initially parsed in

block header during setup stage, our SPV

client then verifies the user’s transaction ID

indeed belongs to that block. This Merkle

branches verification takes O(log h) time,

as bottom-up computing Merkle root with

Merkle branches traverses level by level.

Confirmations
Once the Merkle tree verification

using Merkle branches proves the existence

of the user’s transaction in the block, our

SPV client then computes block depth to

evaluate transaction’s validity and security.

Since the number of confirmations of a

transaction is just the block depth of the

block, our SPV client can quickly compute

it in O(1) time using the initially computed

block height during the setup stage. Now,

our SPV client responds the user to verify

whether the transaction is embedded in

main chain as well as the number of

confirmations of this transaction.

To defend against double spending

attack, a Bitcoin transaction should be at

least 6 blocks deep, which means getting at

least 6 confirmations. Of course, the deeper

a transaction is buried in main chain, the

harder for an attacker to be able to

manipulate it. Getting at least 6

confirmations to confirm a transaction is

widely adopted by many popular Bitcoin

clients. This is based on the assumption that

an attacker is very unlikely to amass more

than 10% of the total hash rate of the

Bitcoin network. As of 2017, according to

statistics by blockchain.com, the total hash

rate of Bitcoin network is about 10,000,000

tera hashes per second, and so 10% of total

computation power of Bitcoin network is

about 1,000,000 tera hashes per second.

In comparison, the most powerful

Bitcoin miner in 2017 market is AntMiner

s9. It costs about 2000 USD and it has a

 6

hash rate of about 10 tera hashes per second.

In other words, the attacker should have

control over the computation power of

about 100,000 AntMiner s9 to manipulate a

transaction with 6 confirmations. These

Bitcoin miners together would cost about

200 millions USD, not to mention

electricity fees and other hardware

equipment like power supply units and

cooling solutions to run these Bitcoin

miners.

Thus, it is generally good practice

for SPV client users to wait for 6 or more

confirmations for each Bitcoin transaction,

because it becomes exponentially more

expensive to reverse a transaction. And for

large amount transactions, users should use

full node Bitcoin client instead of SPV

client, since full node client would verify

every block in blockchain.

Conclusion
Merkle tree is the key in SPV client

verifying Bitcoin transaction. Some may

wonder why Merkle tree scheme is chosen

to hash all transactions within each block

instead of simply hashing all transactions in

order sequentially. It is true that sequential

hashing scheme works, since manipulating

any one of the transactions within the block

would also change the final computed hash.

However, in order for remote thin client to

verify a transaction, full node would need

to send over all other transactions within the

block for thin client to verify the final hash

in block header. Therefore, the network

bandwidth usage is O(h) for each

transaction verification, where h is the

number of transactions within a block.

While a tree structure hashing

scheme like Merkle tree only requires the

number of tree levels of computations for

any transaction within the block to get the

final root hash. So, full node would need to

send over the number of tree levels of hash

branches for remote thin client to verify the

final root hash in block header. Certainly,

manipulating any one of the transactions

within the block would change the final

computed Merkle root hash. Therefore, the

network bandwidth usage of our SPV client

is O(log h) for each transaction verification.

As of 2017, according to statistics

by blockchain.com, the average number of

transaction per block is around 1500. To put

into perspective, thin client using sequential

hashing scheme would then require all

other 1499 transaction hashes from full

node to verify a transaction. In comparison,

Merkle tree scheme would have 1500

leaves, 750 hashes in next level, then 375

hashes, 188 hashes, 94 hashes, 47 hashes,

24 hashes, 12 hashes, 6 hashes, 3 hashes, 2

hashes and the final Merkle root hash.

There is a total of 12 tree levels, and so SPV

client using Merkle tree scheme would only

require 12 transaction hashes from full node

to verify a transaction. Clearly, SPV

protocol on average uses much less network

bandwidth to verify transactions.

 7

To sum up, our full node proxy

takes O(log h) time to collect Merkle

branches using cached Merkle tree to

respond our SPV client’s transaction query.

Then, our SPV client also takes O(log h)

time to compute Merkle root using the

Merkle tree branches to verify the user’s

transaction ID. Therefore, the complete

Bitcoin transaction verification service of

our SPV client only takes O(log h) time and

O(log h) network bandwidth.

Sources
https://blockchain.com/

https://bitcoin.org/

https://bitcoin.stackexchange.com/

https://en.bitcoin.it/

https://bitcoinmining.com/

	Bitcoin SPV Protocol
	HingOn Miu
	hmiu@andrew.cmu.edu
	Background
	Usage
	Example
	Full Node Proxy
	Merkle Tree Construction
	SPV Client
	Merkle Tree Verification
	Confirmations
	Conclusion
	Sources

