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Background 
 Running a Bitcoin full node client to 

use its wallet to store Bitcoins is not always 

ideal for users, since full node clients have 

certain hardware requirements. According 

to bitcoin.org, full node requires over a 

hundred gigabytes of free disk space, 2 

gigabytes of RAM, internet connection 

with upload speeds of at least 50 kilobytes 

per second, and 6 or more hours to be left 

running per day. So, it is fair to expect that 

most of that disk space is used to store the 

Bitcoin blockchain. As of 2017, according 

to statistics by blockchain.com, the total 

size of raw Bitcoin blockchain is about 130 

gigabytes. Since full node client keeps a 

copy of entire raw blockchain and it could 

take hours or even days to download all 

blockchain files, casual Bitcoin user should 

not be always running full node client just 

to use its wallet to store a few Bitcoins. 

 

 

According to original Bitcoin paper 

by Satoshi Nakamoto, Simplified Payment 

Verification (SPV) is a secure method for 

Bitcoin user to verify payments without 

running full node. Instead of keeping the 

entire blockchain like a full node client, 

SPV client only needs to keep a copy of all 

the block headers, as SPV protocol verifies 

a transaction by querying full nodes to 

obtain Merkle branches for that transaction. 

It then uses the Merkle tree structure for 

proof of inclusion by recomputing each 

ancestor hash with Merkle branches and 

matching the Merkle root hash in the block 

header, without the need to parse the entire 

block to look for that transaction. 

 

As of 2017, according to statistics 

by blockchain.com, the total number of 

blocks in blockchain is about 500,000. As 

each block headers takes exactly 80 bytes, 

each instance of SPV client requires merely 

500,000 * 80 bytes = 40 megabytes of disk 

storage for all block headers. Therefore, 

running a SPV client certainly has a much 

lighter hardware requirement than running 

a full node client, and so it is a better choice 

for casual Bitcoin users. 

 

 

 

Usage 
1. Install Python dependencies and 

Bitcoin core. Run Bitcoin full node to 

download complete raw .dat blockchain 

files. 

 

2. Run a local instance of full node proxy 

and provide the proxy the directory path 
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to the raw blockchain files. Wait for the 

full node proxy parses each block of the 

raw blockchain and stores all block 

headers to file. 

 

3. Run remote instance(s) of SPV client. 

Wait for the SPV client to download 

and parse block headers generated by 

full node proxy. 

 

4. Enter Bitcoin transaction hash (TXID) 

into SPV client interface to verify 

transactions and check confirmations. 

 

Example 

 

Full Node Proxy 
Before running our proxy, we have 

to first run Bitcoin full node to retrieve the 

latest complete raw Bitcoin blockchain files. 

These files are named blkXXXXX.dat, and 

blk00000.dat is the first file of the raw 

blockchain. These files are usually located 

in ~/.bitcoin/blocks/. After downloading 

those raw blockchain files, we can start our 

full node proxy and run it localhost to listen 

for HTTP GET requests from SPV clients 

on port 9000 for testing purpose. 

 

The absolute path of the local 

directory that holds those raw Bitcoin 

blockchain files has to be provided to our 

proxy. After starting our proxy, the setup 

stage is initiated before our proxy server 

forks worker threads to handle incoming 

HTTP connections. The setup stage loads 

and parses each blockchain file to compute 

block hash for each block and transaction 

hash for each transaction. 

 

To compute the block hash of a 

block, which is the block header hash, our 

proxy parses version number, previous 

block hash, Merkle root hash, time, nBits 

and nonce of each block. These fields are 

concatenated to run SHA-256 hashing 

twice to compute the block hash. And of 

course, the block header (exactly 80 bytes) 

of each block is stored to file for SPV 

clients to retrieve later. 

 

To compute the transaction hash of 

a transaction, our proxy server parses 

transaction version number, input 

transaction count, input transactions, output 

transaction count, output transactions and 

lock time of each transaction. These fields 

are concatenated to run SHA-256 hashing 

twice to compute the transaction hash. Our 

proxy also stores the index of each 

transaction within a block in a global 

transaction hash table so that finding 

transaction index of a transaction takes O(1) 

time. This transaction index is essential in 

constructing a Merkle tree efficiently, since 

it is the transaction’s leaf index in Merkle 

tree. 

 

Merkle Tree Construction 
For all transactions parsed in each 

block, our full node proxy runs Merkle tree 

hashing algorithm with all the computed 

transaction hashes to verify that the Merkle 

root hash in block header is correct. The 

bottom-up hashing algorithm runs on every 

level of the Merkle tree from the bottom 



 3 

leaf hashes. Each pair of child hashes are 

concatenated to run SHA-256 hashing 

twice to compute the parent hash. The 

concatenation order of each child hash pair 

is determined by index of the child hashes 

in each tree level. If a level of Merkle tree 

has an even number of hashes, each pair of 

hashes is concatenated and hashed in index 

order. If a level of Merkle tree has an odd 

number of hashes, the last hash is replicated 

and appended to the end. The algorithm 

terminates only when a single hash is left in 

the tree, which is the resulted Merkle root 

hash. Below diagram illustrates a case of 

computing Merkle root hash for a total of 5 

transactions in a block. 

 

 

The entire Merkle tree of each block 

is cached so that full node proxy can 

respond Merkle branches to SPV client’s 

transaction query faster. Our proxy stores 

the cached Merkle tree for each block in a 

global block hash table so that finding 

cached Merkle tree of a transaction takes 

O(1) time. Therefore, as a SPV client query 

our proxy server a transaction hash (TXID), 

our proxy first finds its transaction index in 

O(1) time using the global transaction hash 

table. Next, our proxy server finds the 

transaction’s corresponding cached Merkle 

tree in O(1) time using the global block 

hash table. 

 

With the cached Merkle tree and the 

leaf index of the transaction, our proxy 

server traverses the Merkle tree bottom-up 

level by level to collect the transaction’s 

Merkle branch pair in each level. Below 

diagram illustrates a case of collecting 

Merkle branches (in red) for leaf TXID2 to 

compute the Merkle root hash. 

 

 

Obviously, bottom-up traversal of 

Merkle tree to collect Merkle branches 

takes O(log h) time, where h is the number 

of transactions within a block. Since finding 

a transaction index takes O(1) time and 

collecting Merkle branches in a cached 

Merkle tree takes O(log h) time,  the overall 

response time of our full node proxy to 

answer SPV client’s transaction query is 

O(log h). Without the Merkle tree cache, 

constructing the whole tree of a block to 

collect Merkle branches for each SPV client 

transaction query takes O(h * log h) time. 

This is considerably slower than caching 

Merkle tree in full node proxy’s setup stage. 

 

Now, let’s look at the memory 

trade-off for caching Merkle tree in setup 

stage. Since the size of a Merkle tree takes 

(h * log h) / 2 space, the memory of caching 

Merkle tree for a block is then O(h * log h). 

Therefore, the memory of global block hash 

table to cache Merkle tree for all blocks is 

then O(b * h * log h), where b is the total 

number of blocks in blockchain. As of 2017, 

according to statistics by blockchain.com, 

the average number of transaction per block 

is around 1500, and the total number of 

blocks in blockchain is about 500,000. As 

each Merkle branch is essentially a 64-
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character long SHA-256 hexadecimal hash, 

each Python Merkle branch hash string 

takes about 100 bytes (check Python built-

in type sizes with sys.getsizeof). Therefore, 

caching Merkle tree for all blocks takes 

500,000 * (1500 * log 1500) / 2 * 100 bytes 

 120 gigabytes. 

 

Certainly, a practical approach is 

caching only recent 3-day or 1-week blocks’ 

Merkle tree as it becomes unlikely for SPV 

client users to frequently verify very old 

transactions. So, some response delay for 

proxy server to construct complete Merkle 

tree to collect Merkle branches for old 

transactions is likely to be acceptable to 

users. As of 2017, according to statistics by 

blockchain.com, the average number of 

blocks mined per day is about 150. So, 

caching Merkle tree for 3-day amount of 

blocks in proxy setup stage takes about         

3 * 150 * (1500 * log 1500) / 2 * 100 bytes 

 100 megabytes. With this in mind, we can 

more fairly decide the response time and 

memory trade-off for our full node proxy. 

 

SPV Client 
After our full node proxy writes all 

block headers to file, we can run multiple 

remote instances of SPV client. After 

starting our SPV client, the setup stage is 

initiated to download all block headers 

from full node proxy. Next, our SPV client 

parses each block header to construct a 

global header structure hash table, in which 

each block header’s previous block hash is 

the key. Therefore, it is now possible to 

traverse the blockchain starting from the 

genesis block header, as our SPV client can 

compute next block header’s block hash 

from the block header stored in the hash 

table. Note that the previous block hash of 

the genesis block is all zero bytes, and so 

our client can easily fetch the genesis block 

header from hash table with zero string hash. 

 

To compute the block hash of a 

block header, our SPV client parses version 

number, previous block hash, Merkle root 

hash, time, nBits and nonce. These fields 

are concatenated to run SHA-256 hashing 

twice to compute the block hash. With the 

block hash of each header, our SPV client 

can identify next block header using the 

header hash table. 

 

Next, our SPV client runs breadth 

first search from the genesis block header to 

compute the distance of each block header 

from genesis block header. So, knowing the 

distance of each block header, our SPV 

client can identify the longest path from 

genesis block header, which is the main 

chain of blockchain. This breadth first 

search pre-processing computation in setup 

stage has O(V + E) runtime, so that our SPV 

client can answer user’s transaction queries 

to verify whether a transaction belongs to a 

block in main chain with O(1) runtime. 
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Merkle Tree Verification 
 When SPV client completes setup 

stage, user can interact with the client 

interface to enter transaction hash (TXID) 

to verify Bitcoin transactions and check 

confirmations. After a transaction hash is 

inputted, our SPV client makes HTTP 

query of this transaction to full node proxy 

to get the transaction’s corresponding 

block’s transaction count, transaction index 

within the block and the Merkle branch 

pairs of every tree level. 

 

 After full node proxy responded, 

our SPV client bottom-up constructs the 

Merkle tree structure of the block using just 

the transaction count (the number of Merkle 

leaves at bottom tree level) and the 

transaction index (the index of the Merkle 

leaf). With the Merkle tree structure, our 

SPV client now identifies the hashing order 

with each Merkle branch in each level. The 

hashing order is whether concatenating to 

right or left of the Merkle branch pair for 

each tree level before SHA-256 hashing. 

This bottom-up Merkle tree structure 

reconstruction takes O(log h) time, where h 

is the number of transactions within a block. 

Below diagram illustrates a case of 

determining the hashing order of each 

Merkle branch pair with each level’s 

indexes in Merkle tree structure. 

 

 

With the hashing order of each 

Merkle branch pair determined, our SPV 

client bottom-up computes the Merkle tree 

root using the Merkle branch pairs retrieved 

from full node proxy and the Merkle leaf, 

which is the user’s transaction ID to verify. 

If the computed Merkle tree root matches 

the Merkle root hash initially parsed in 

block header during setup stage, our SPV 

client then verifies the user’s transaction ID 

indeed belongs to that block. This Merkle 

branches verification takes O(log h) time, 

as bottom-up computing Merkle root with 

Merkle branches traverses level by level. 

 

Confirmations 
Once the Merkle tree verification 

using Merkle branches proves the existence 

of the user’s transaction in the block, our 

SPV client then computes block depth to 

evaluate transaction’s validity and security. 

Since the number of confirmations of a 

transaction is just the block depth of the 

block, our SPV client can quickly compute 

it in O(1) time using the initially computed 

block height during the setup stage. Now, 

our SPV client responds the user to verify 

whether the transaction is embedded in 

main chain as well as the number of 

confirmations of this transaction. 

 

To defend against double spending 

attack, a Bitcoin transaction should be at 

least 6 blocks deep, which means getting at 

least 6 confirmations. Of course, the deeper 

a transaction is buried in main chain, the 

harder for an attacker to be able to 

manipulate it. Getting at least 6 

confirmations to confirm a transaction is 

widely adopted by many popular Bitcoin 

clients. This is based on the assumption that 

an attacker is very unlikely to amass more 

than 10% of the total hash rate of the 

Bitcoin network. As of 2017, according to 

statistics by blockchain.com, the total hash 

rate of Bitcoin network is about 10,000,000 

tera hashes per second, and so 10% of total 

computation power of Bitcoin network is 

about 1,000,000 tera hashes per second. 

 

In comparison, the most powerful 

Bitcoin miner in 2017 market is AntMiner 

s9. It costs about 2000 USD and it has a 
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hash rate of about 10 tera hashes per second. 

In other words, the attacker should have 

control over the computation power of 

about 100,000 AntMiner s9 to manipulate a 

transaction with 6 confirmations. These 

Bitcoin miners together would cost about 

200 millions USD, not to mention 

electricity fees and other hardware 

equipment like power supply units and 

cooling solutions to run these Bitcoin 

miners. 

 

Thus, it is generally good practice 

for SPV client users to wait for 6 or more 

confirmations for each Bitcoin transaction, 

because it becomes exponentially more 

expensive to reverse a transaction. And for 

large amount transactions, users should use 

full node Bitcoin client instead of SPV 

client, since full node client would verify 

every block in blockchain. 

 

Conclusion 
Merkle tree is the key in SPV client 

verifying Bitcoin transaction. Some may 

wonder why Merkle tree scheme is chosen 

to hash all transactions within each block 

instead of simply hashing all transactions in 

order sequentially. It is true that sequential 

hashing scheme works, since manipulating 

any one of the transactions within the block 

would also change the final computed hash. 

However, in order for remote thin client to 

verify a transaction, full node would need 

to send over all other transactions within the 

block for thin client to verify the final hash 

in block header. Therefore, the network 

bandwidth usage is O(h) for each 

transaction verification, where h is the 

number of transactions within a block. 

 

While a tree structure hashing 

scheme like Merkle tree only requires the 

number of tree levels of computations for 

any transaction within the block to get the 

final root hash. So, full node would need to 

send over the number of tree levels of hash 

branches for remote thin client to verify the 

final root hash in block header. Certainly, 

manipulating any one of the transactions 

within the block would change the final 

computed Merkle root hash. Therefore, the 

network bandwidth usage of our SPV client 

is O(log h) for each transaction verification. 

 

As of 2017, according to statistics 

by blockchain.com, the average number of 

transaction per block is around 1500. To put 

into perspective, thin client using sequential 

hashing scheme would then require all 

other 1499 transaction hashes from full 

node to verify a transaction. In comparison, 

Merkle tree scheme would have 1500 

leaves, 750 hashes in next level, then 375 

hashes, 188 hashes, 94 hashes, 47 hashes, 

24 hashes, 12 hashes, 6 hashes, 3 hashes, 2 

hashes and the final Merkle root hash. 

There is a total of 12 tree levels, and so SPV 

client using Merkle tree scheme would only 

require 12 transaction hashes from full node 

to verify a transaction. Clearly, SPV 

protocol on average uses much less network 

bandwidth to verify transactions. 
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To sum up, our full node proxy 

takes O(log h) time to collect Merkle 

branches using cached Merkle tree to 

respond our SPV client’s transaction query. 

Then, our SPV client also takes O(log h) 

time to compute Merkle root using the 

Merkle tree branches to verify the user’s 

transaction ID. Therefore, the complete 

Bitcoin transaction verification service of 

our SPV client only takes O(log h) time and 

O(log h) network bandwidth. 

 

Sources 
https://blockchain.com/ 

https://bitcoin.org/ 

https://bitcoin.stackexchange.com/ 

https://en.bitcoin.it/ 

https://bitcoinmining.com/ 
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