
Bitcoin Blockchain Query API
HingOn Miu

hmiu@andrew.cmu.edu

Block Data Structure:
Magic Number

4 bytes

Block Size

4 bytes

Version Number

4 bytes

SHA256 Hash of Previous Block

32 bytes

SHA256 Hash of Merkle Root

32 bytes

Mining Time

4 bytes

nBits

4 bytes

Nonce

4 bytes

Transaction Count

1, 3, 5 or 9 bytes

Transactions

~ bytes

…

NULL Padding

~ bytes

Magic Number

4 bytes

…

Block Example:
Genesis Block

> hexdump -C -n 297 blk00000.dat
f9 be b4 d9 1d 01 00 00 01 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 3b a3 ed fd

7a 7b 12 b2 7a c7 2c 3e 67 76 8f 61 7f c8 1b c3

88 8a 51 32 3a 9f b8 aa 4b 1e 5e 4a 29 ab 5f 49

ff ff 00 1d 1d ac 2b 7c 01 01 00 00 00 01 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff

ff ff 4d 04 ff ff 00 1d 01 04 45 54 68 65 20 54

69 6d 65 73 20 30 33 2f 4a 61 6e 2f 32 30 30 39

20 43 68 61 6e 63 65 6c 6c 6f 72 20 6f 6e 20 62

72 69 6e 6b 20 6f 66 20 73 65 63 6f 6e 64 20 62

61 69 6c 6f 75 74 20 66 6f 72 20 62 61 6e 6b 73

ff ff ff ff 01 00 f2 05 2a 01 00 00 00 43 41 04

67 8a fd b0 fe 55 48 27 19 67 f1 a6 71 30 b7 10

5c d6 a8 28 e0 39 09 a6 79 62 e0 ea 1f 61 de b6

49 f6 bc 3f 4c ef 38 c4 f3 55 04 e5 1e c1 12 de

5c 38 4d f7 ba 0b 8d 57 8a 4c 70 2b 6b f1 1d 5f

ac 00 00 00 00 f9 be b4 d9

Block Fields:
 Magic Number

The first 4 bytes of every block in blockchain is 0xD9B4BEF9. The magic number is

an identifier to alert parser a new block is right after it. It is in little-endian order.

 Block Size

These 4 bytes contain the size of this block, starting from the block header to the end

of all transactions. The block size field is in little-endian order.

 Version Number

These 4 bytes indicate which set of block validation rules to follow. The version

number is in little-endian order.

 Previous Block Hash

These 32 bytes contain a SHA256(SHA256()) hash of the previous block’s header,

such that each block points to its previous block. The previous block hash is in

internal byte order.

 Merkle Root Hash

These 32 bytes contain a SHA256(SHA256()) hash of the Merkle root, which is

derived from the hashes of all transactions in this block, such that none of those

transactions can be modified without modifying the header. The Merkle root hash is

in internal byte order.

 Time

These 4 bytes contain a Unix epoch time when the miner started hashing the header. It

must be strictly greater than the median time of the previous 11 blocks. It is in little-

endian order.

 nBits

These 4 bytes contain an encoded version of the target threshold this block’s header

hash must be less than or equal to, such that nBits adjusts the difficulty of hashing. It

is in little-endian order.

 Nonce

These 4 bytes contain an arbitrary number that miners change to modify the header

hash in order to produce a hash less than or equal to the target threshold. It is in little-

endian order.

 Transaction Count

This is a variable length integer that may vary in length to save space. It represents the

total number of transactions in this block. It is in little-endian order.

 Transactions

These bytes contain raw transactions that each transaction may have multiple inputs

and outputs. Each transaction contains version number, input count, list of input

transactions, output count, list of output transactions and lock time.

 NULL Padding

 There are possible zero bytes in between blocks.

Transaction Data Structure:
Version Number

4 bytes

Input TX Count

~ bytes

Input #1: SHA256 Hash of Previous Transaction

32 bytes

 Input #1: TX Index

4 bytes

Input #1: Script Size

~ bytes

Input #1: Signature Script

~ bytes
Input #1: Sequence

4 bytes

Output TX Count

~ bytes

Output #1: Satoshi Amount

8 bytes
Output #1: Script Size

~ bytes
Output #1: Pub-Key Script

~ bytes

Lock Time

4 bytes

Version Number

4 bytes

…

Transaction Example:
Coinbase Transaction of Genesis Block

 > hexdump -C -s 89 -n 204 blk00000.dat
01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 ff ff ff ff 4d 04 ff ff 00 1d 01

04 45 54 68 65 20 54 69 6d 65 73 20 30 33 2f 4a

61 6e 2f 32 30 30 39 20 43 68 61 6e 63 65 6c 6c

6f 72 20 6f 6e 20 62 72 69 6e 6b 20 6f 66 20 73

65 63 6f 6e 64 20 62 61 69 6c 6f 75 74 20 66 6f

72 20 62 61 6e 6b 73 ff ff ff ff 01 00 f2 05 2a

01 00 00 00 43 41 04 67 8a fd b0 fe 55 48 27 19

67 f1 a6 71 30 b7 10 5c d6 a8 28 e0 39 09 a6 79

62 e0 ea 1f 61 de b6 49 f6 bc 3f 4c ef 38 c4 f3

55 04 e5 1e c1 12 de 5c 38 4d f7 ba 0b 8d 57 8a

4c 70 2b 6b f1 1d 5f ac 00 00 00 00

Signature Script of Coinbase Transaction

 > hexdump -C -s 131 -n 77 blk00000.dat
.......EThe Time

s 03/Jan/2009 Ch

ancellor on brin

k of second bail

out for banks___

Transaction Fields:
 Version Number

The first 4 bytes of every transaction in a block contain transaction version number. It

is in little-endian order.

Input Transaction Count

These bytes indicate the number of inputs in this transaction. It is a variable length

integer.

Previous Transaction Hash

These 32 bytes contain the TXID of the transaction holding the output to spend. It is

in internal byte order.

Transaction Index

These 4 bytes contain the output index number of the specific output to spend from

the transaction. It is in little-endian order.

 Script Size

These bytes contain the number of bytes in the script. It is a variable length integer.

 Signature Script

These bytes contain a script which satisfies the conditions placed in the outpoint’s

Pub-Key script.

 Sequence Number

These 4 bytes contain 0xffffffff.

Output Transaction Count

These bytes indicate the number of outputs in this transaction. It is a variable length

integer.

 Satoshi Amount

These 8 bytes contain the amount of Satoshi to spend. It is in little-endian order.

 Pub-Key Script

These bytes define the conditions which must be satisfied to spend this output.

 Lock Time

These 4 bytes contain a Unix epoch time or block number. It is in little-endian order.

API Documentation:
 Testing Base URL: "http://127.0.0.1:9000"

 Method: GET

 Block Header API

 Request block header of the block.

 Endpoint: "/blockheader"

 Parameters:

 $block_hash: 256bit hash of block header

 Full URL:

 http://[HOST]:[PORT]/blockheader?[BLOCK_HASH]

 Success Response:

 200 OK, application/json

 {

 "version": <block version number>,

 "prev_block": <hash of previous block header>,

 "mrkl_root": <hash of all transactions in the block>,

 "time": <time when miner started hashing header>,

 "bits": <target threshold for block hash>,

 "nonce": <arbitrary number to modify block hash>

 }

 Block Transactions API

 Request all transactions of the block.

 Endpoint: "/blocktransactions"

 Parameters:

 $block_hash: 256bit hash of block header

 Full URL:

 http://[HOST]:[PORT]/blocktransactions?[BLOCK_HASH]

 Success Response:

 200 OK, application/json

 {

 "tx_count": <number of transactions>,

 "transactions":

 [{

 "tx_hash": <256bit hash of transaction>

 "value": <BTC amount of transaction>

 }, ...]

 }

 Block Height API

 Request block height of the block.

 Endpoint: "/blockheight"

 Parameters:

 $block_hash: 256bit hash of block header

 Full URL:

 http://[HOST]:[PORT]/blockheight?[BLOCK_HASH]

 Success Response:

 200 OK, application/json

 {

 "height": <Number of blocks since genesis block>

 }

 Main Chain API

 Verify the block is in the longest chain.

 Endpoint: "/mainchain"

 Parameters:

 $block_hash: 256bit hash of block header

 Full URL:

 http://[HOST]:[PORT]/mainchain?[BLOCK_HASH]

 Success Response:

 200 OK, application/json

 {

 "main_chain": <true/false>

 }

 Latest Block API

 Request latest block hash in the longest chain.

 Endpoint: "/latestblock"

 Parameters:

 NONE

 Full URL:

 http://[HOST]:[PORT]/latestblock

 Success Response:

 200 OK, application/json

 {

 "hash": <Latest block hash in main chain>

 }

 Latest Height API

 Request current block height in the longest chain.

 Endpoint: "/latestheight"

 Parameters:

 NONE

 Full URL:

 http://[HOST]:[PORT]/latestheight

 Success Response:

 200 OK, application/json

 {

 "height": <Block height of main chain>

 }

 Transaction Information API

 Request information of the transaction.

 Endpoint: "/transactioninfo"

 Parameters:

 $tx_hash: 256bit hash of transaction

 Full URL:

 http://[HOST]:[PORT]/transactioninfo?[TX_HASH]

 Success Response:

 200 OK, application/json

 {

 "block_hash": <256bit hash of block header>

 "version": <transaction version number>

 "input_tx_count": <number of input transactions>

 "output_tx_count": <number of output transactions>

 "value": <BTC amount of transaction>

 "lock_time": <lock time>

 }

 Transaction Inputs API

 Request input transactions of the transaction.

 Endpoint: "/transactioninputs"

 Parameters:

 $tx_hash: 256bit hash of transaction

 Full URL:

 http://[HOST]:[PORT]/transactioninputs?[TX_HASH]

 Success Response:

 200 OK, application/json

 {

 "input_tx_count": <number of input transactions>,

 "input_transactions":

 [{

 "prev_hash": <256bit hash of previous transaction>

 "sig_script": <pubkey signature script>

 "seq_num": <sequence number>

 }, ...]

 }

 Transaction Outputs API

 Request output transactions of the transaction.

 Endpoint: "/transactionoutputs"

 Parameters:

 $tx_hash: 256bit hash of transaction

 Full URL:

 http://[HOST]:[PORT]/transactionoutputs?[TX_HASH]

 Success Response:

 200 OK, application/json

 {

 "output_tx_count": <number of output transactions>,

 "output_transactions":

 [{

 "value": <BTC amount of output transaction>

 "sig_script": <pubkey signature script>

 }, ...]

 }

Implementation:
Before running our server, we have to first run Bitcoin full node to retrieve the latest

complete raw Bitcoin blockchain files. They are named blkXXXXX.dat and blk00000.dat is

the first file of the raw blockchain. These files are usually located in ~/.bitcoin/blocks/. After

downloading those raw blockchain files, we can start our server and run it localhost to listen

for HTTP connections on port 9000 for testing purpose. Then, our server should be ready to

handle GET requests of various endpoints following the API format of above documentation

and respond queries in JSON format.

 The absolute path of the directory that holds those raw Bitcoin blockchain files has to

be inputted to our server. After starting our server, the setup stage is initiated before our server

forks worker threads to handle incoming HTTP connections. The setup stage loads and parses

each blockchain file to construct a global block structure hash table, in which each block’s

previous block hash is the key. Therefore, it is now possible to traverse the blockchain starting

from the genesis block, as our server can compute next block’s block hash from the block

header stored in the hash table. Note that the previous block hash of the genesis block is all

zero bytes, and so our server can easily fetch the genesis block from hash table with zero bytes

hex string hash.

To compute the block hash of a block, which is the block’s block header hash, our

server stores version number, previous block hash, Merkle root hash, time, nBits and nonce of

each block. These fields are concatenated to run SHA-256 hashing twice to compute the block

hash. With the block hash of each block, our server can identify next block using the global

hash table. So, same with runtime of the hash table, our server can answer queries like version

number, previous block hash, Merkle root hash, time, nBits and nonce of any block in O(1)

runtime.

To compute the transaction hash of a transaction, our server stores transaction version

number, input transaction count, input transactions, output transaction count, output

transactions and lock time of each transaction. These fields are concatenated to run SHA-256

hashing twice to compute the transaction hash. With the transaction hash of each transaction

computed and stored, our server can fetch all transaction hashes of a block using the global

block hash table. So, same with runtime of the hash table, our server can answer related queries

like transaction version number, input transaction count, input transactions, output transaction

count, output transactions and lock time of any transaction in O(1) runtime.

For all transactions parsed in each block, our server runs Merkle tree hashing algorithm

with all the computed transaction hashes to verify that the Merkle root hash in block header is

correct. The bottom-up recursive hashing algorithm runs on every level of the Merkle tree from

the bottom leaf hashes. Each pair of child hashes are concatenated to run SHA-256 hashing

twice to compute the parent hash. If a level of Merkle tree has an odd number of hashes, the

last hash is replicated and appended to the end. The algorithm terminates only when a single

hash is left in the tree, which is the Merkle root hash.

 Next, our server runs breadth first search from the genesis block to compute the distance

of each block from genesis block. So, knowing the distance of each block, our server can

identify the longest path from genesis block, which is the main chain of Bitcoin blockchain.

This breadth first search pre-processing computation has O(V + E) runtime, so that our server

can answer queries like whether a block is in main chain and what the latest block is in main

chain in O(1) runtime. Since block height is just the number of blocks counting from the genesis

block, our server can answer related queries with computed breadth first search distances of

blocks, like what height a block is and what the latest block height is in main chain in O(1)

runtime. Note that orphan blocks now have negative distance after breadth first search, since

they are disjointed from the genesis block. So, our server can answer query to identify orphan

blocks as well. Apparently, after the setup stage, all related queries should be answered by our

server in O(1) runtime.

 For simplicity of the project, our server uses the built-in Python dictionary for the block

structure hash table. As Bitcoin blockchain continues to grow, it is a valid to concern that the

built-in Python dictionary type cannot hold all the required blockchain information in memory

and get a MemoryError exception in Python runtime. Therefore, a remote in-memory database

like Redis could be used instead with the same key-value hash table format if needed.

Source:
https://bitcoin.org/en/developer-reference

https://en.bitcoin.it/wiki/Block_hashing_algorithm

