
BitTorrent with Congestion Control

HingOn Miu (hmiu@andrew.cmu.edu) Xing Zhou (xingz@andrew.cmu.edu)

Carnegie Mellon University
24–10–2013

Introduction

The peer program mimics a peer user in the BitTorrent network. Each peer has partial

or full data of a complete file, along with the hashes of the file. The peers can then

communicate through UDP to get the missing file chunks to complete the file.

Peer-to-Peer

Upon start up, each peer is given a list of available peers, a list of file chunks the peer

currently owns, and the master chunk file list. The peer loads the hashes it owns into memory

and get ready to receive either incoming query requests or user inputs.

Each peer can be functionally separated into two mutually exclusive parts: a peer can

be a client or a server. It is a client when it processes a user request and requests chunks from

other peers. It is a server when it sends data in response to a query. The server side

implements the sliding window algorithm for flow control, while the client side handles

contacting servers for retransmits.

Operation

The operation of each peer happens in stages named set up, discovery, data collection,

and data construction.

Set up stage

The set up stage is exactly what it sounds like. It begins as soon as the exec is

called. In this stage, each peer parses its own haschunk file and loads its own chunk

hashes into memory. This stage ends when all the chunk hashes have been loaded

and the peer is ready to play the role of either client or server.

Discovery stage

The discovery stage begins once the user has typed a GET request. The peer

would parse the request and extract the requested chunk file. It'll load the hashes in

the chunk file into memory. Then it'll issue WHOHAS requests with the list of

hashes to all of its peers in its map file. The stage completes once the peer - client -

receives at least one IHAVE claim for each missing chunks and it moves into the data

collection stage.

Data Collection stage

Data collection is when the client issues GET requests to the peers that contain

the chunks desired. In response, the servers should send DATA packets containing

the data chunks that the client will eventually assemble. It is in this stage that a fate-

sharing "transfer" connection is established, and so this "transfer" connection

manages the states of the transfer, such as the sliding window algorithm and

retransmission.

During Data Collection, new IHAVE received from peers will also be listed as

one of the available peers of the missing chunk. Hence, technically, during Data

Collection, discoveries of missing chunks' ownership are still processed. Each client

and server keeps a list of active transfers, and the data collection stage ends once the

list is empty.

Data Construction stage

Data construction stage is when the data from the peers are output to the file

requested by the user.

Reliable Data Transfer

The peer is implemented with TCP-like congestion control. The sender side

congestion window size is increased or decreased during the Slow Start and Congestion

Avoidance mode. Every timeout of ACK packets or duplicate ACK packets mark the

transitioning between SS and CA mode.

Slow Start mode increases the window size per ACK packets received, so the increase

should be exponential. Congestion Avoidance mode increases the window size per round-trip

time, so the increase should be linear. The only decrease in window size would happens

between the transition from CA to SS mode when a loss of packet is detected, the window

size is then reset to 1.

Data Structures

There are three main data structures used in this project. The most crucial one is the

linked list data structure, which is defined in linkedlist.h/c. This is the generic single-linked

linked list data structure with appropriate manipulation functions. The data it stores is

agnostic and thus is used throughout the code to main any dynamic lists.

The second structure is the chunk structure, defined in chunk.h/c. This chunk

structure associates the chunk id, hex hash, and binary hash. All chunks are created in the

setup stage and populated as chunks are received.

Testing Methodology

Peers Setup Configurations:

-- 2 peers, mutually exclusive ownership of the files

-- 3 peers, mutually exclusive ownership of the files

-- 3 peers, duplicate ownership of the files among 2 peers

1.) We run multiple peers in the network (p1, p2, p3,...), and we tested p1 with one

user GET request that fetch data from all other peers p2, p3, ...

2.) During the data transfer we shutdown peers and we let the data fetching peers

begin new fetches with other available peers instead.

3.) We tested with multiple simultaneous user GET requests (each p1, p2, p3,... are

getting and sending data packets to each other).

4.) Multiple sequential user GET request for one peer. After a peer is done and prints

"GOT ...", we enter more GET requests to the peer for identical or different data.

5.) Tests are repeated with and without congestion simulation.

Vulnerabilities

For now, the local peer pre-loads all chunk data of the chunks listed in the

has_chunk_file. Hence, it is a potential burden on running time and memory allocation if the

local peer's has_chunk_file contains too many hashes.

Since each chunk is 512 * 1024 = 524288 bytes and that different machines have

different runtime memory allocation size, there is a risk of running out memory to allocate

buffers to store the chunk data in the peer setup stage. Because malloc or calloc returns

NULL if it runs out of memory to allocate, we have properly handled those cases to avoid

segmentation fault.

Our implementation is that the peer floods the network with WHOHAS packets until

each missing chunk has at least one IHAVE reply before the peer sends any GET packets

(sort of like waiting for all missing chunks to be claimed before fetching data). For example

if c1, c2, and c3 are missing, and if the network does not have c3, the peer does not send GET

for c1 and c2, and waits for c3 to be claimed before sending GET for c1, c2 and c3.

Hence, while this strategy avoids fetching data that might end up undeliverable to the

user (if c3 never shows up in the network), it creates inefficiency since the peer waits for all

missing chunks to be ready to be fetched instead of getting whatever is available now and

getting those that with delayed IHAVE replies later.

